
The Functional Web

MAY/JUNE 2011	 1089-7801/11/$26.00 © 2011 IEEE	 Published by the IEEE Computer Society� 81

R oughly two years ago, I began work on
the Yesod Web framework. I originally
intended FastCGI for my deployment strat-

egy, but I also created a simple HTTP server for
local testing, creatively named SimpleServer.
Because Yesod targets the Web Application
Interface (WAI), a standard interface between
Haskell Web servers and Web applications, it
was easy to switch back ends for testing and
production.

It didn’t take long before I started getting
feature requests for SimpleServer: slowly but
surely, features such as chunked transfer encod-
ing and sendfile-based file serving made their
way in. The tipping point was when Matt Brown
of Soft Mechanics made some minor tweaks
to SimpleServer and found that it was already
the fastest Web server in Haskell (see Figure 1).
After that, he and I made some modest improve-
ments and released the code as Warp.

Very little code in Warp itself is geared
toward speed. For the most part, it simply
builds on the shoulders of giants — by relying
on underlying libraries that perform extremely
well, Warp can achieve a lot in fewer than 500
lines of code. Let’s explore how Warp uses each
of these libraries, what makes them so powerful,
and how they fit together.

Glasgow Haskell Compiler
The first library isn’t really a library at all: the
Glasgow Haskell Compiler (GHC) is the standard
Haskell compiler. It has all the optimizations
you’d expect of an industrial-strength com-
piler, such as loop unrolling, extensive inlin-
ing, unboxing, and fusion. It even lets users
specify their own optimizations via rewrite
rules. In addition, it provides a very sophisti-
cated multithreaded runtime. One great thing

about this runtime is its lightweight threads. As
a result of this feature, Warp simply spawns a
new thread for each incoming connection, bliss-
fully unaware of the gymnastics the runtime is
performing under the surface.

Part of this abstraction involves converting
synchronous Haskell I/O calls into asynchro-
nous system calls. Once again, Warp reaps the
benefits by calling simple functions like recv
and send, while GHC does the hard work.

Up through GHC 6.12, this runtime sys-
tem was based on the select system call. This
worked well enough for many tasks but didn’t
scale for Web servers. One big feature of the
GHC 7 release was a new event manager, written
by Google’s Johan Tibell and Serpentine’s Bryan
O’Sullivan. This new runtime uses different sys-
tem calls (epoll, kqueue, and so on) depending
on what’s available on the target operating sys-
tem. Additionally, Tibell and O’Sullivan made
extensive enhancements to the data structures
the manager uses: it now uses a radix trie for
storing callbacks and a priority search queue for
timeouts.

The end result: Haskell programs can easily
scale to thousands of simultaneous connections.
Programmers can write their code against a very
simple API, spawning new lightweight threads
using forkIO and calling blocking functions
inside them.

Enumerator
A recent move in the Haskell community
has been adopting the enumerator pattern.
This pattern allows for processing streams of
data in a deterministic manner. This is espe-
cially important for Web servers, which must
quickly release scarce resources such as file
descriptors.

Warp: A Haskell Web Server

Michael Snoyman • Suite Solutions

IC-15-03-funweb.indd 81 4/6/11 3:52 PM

The Functional Web

82	 www.computer.org/internet/� IEEE INTERNET COMPUTING

John Millikin (unaffiliated) wrote
the enumerator package that WAI
and Warp use. In this package, the
central datatype is Iteratee. An
Iteratee is a data consumer, receiv-
ing chunks of data and performing
some action with them. Iteratee is
an instance of Monad, making it easy
to compose two Iteratees together
to build up more complicated actions.
(For those not familiar, a Monad
is a container that encapsulates a
computation’s side effects. Haskell
programmers can easily combine
different monadic values to build up
more powerful computations.)

The flip side of Iteratee is
Enumerator, a data producer. An
Enumerator will feed data into an
Iteratee until either the Enumerator
has run out of data or the Iteratee
no longer accepts more. A simple
example of the interaction between
these two is file input and output:
enumFile is an Enumerator that reads
data from a file and streams it into an
Iteratee, whereas iterHandle is an
Iteratee that consumes a stream of
bytes and sends them to a handle.

A third datatype, an Enumeratee,
is a combination of Enumerator

and Iteratee: it receives a stream
of data from an Enumerator and
sends a new stream of data to an
Iteratee.

Warp’s entire I/O system is built
on top of the Enumerator datatype.
Once Warp establishes a connection
and starts a new handler thread, it
produces an Enumerator from the
client socket and pipes that data into
an Iteratee. This Iteratee is where
all request parsing occurs.

Enumerator’s built-in chunking
behavior also works perfectly for
Warp as well. The Enumerator opti-
mizes the size of its requested buf-
fers, currently set at 4,096 bytes.
The consuming Iteratee, on the
other hand, has no concept of these
chunks’ size. Instead, it simply con-
sumes as many bytes as it wants.
If there isn’t enough buffered con-
tent to complete an operation (for
example, the chunk terminated in
the middle of an HTTP header), then
control automatically returns to the
Enumerator to provide more output.
If too much data was provided, the
remainder is left in the Enumerator
to be consumed by the next action.
It will either be part of the request

body and sent to the application, or
will be part of the next request.

Enumeratees also play an impor-
tant role in Warp. They ensure that
the application consumes the entire
request body before continuing
with the next request, and that the
application doesn’t consume more
bytes than it should for the request
body. They also convert the response
body from a stream of Builders (dis-
cussed next) to a stream of bytes with
chunked transfer encoding applied.

Blaze-Builder
The simplest way to represent a
string in Haskell is as a list of Uni-
code characters. This has two major
performance issues: it’s expensive to
append data to a list, and the rep-
resentation of the list has a lot of
overhead. Historically, two different
solutions have existed, one solving
each issue:

•	 Use difference lists instead of
actual lists during data con-
struction, and produce only the
final output list at the end. This
exploits the fact that append-
ing to a difference list is an O(1)
operation.

•	 Represent our data using a packed
format such as ByteString or the
newer Text datatype.

The blaze-html package, by
Jasper Van der Jeugt of Ghent
University and Simon Meier of ETH
Zurich, sought to solve both issues
during HTML content construction.
The idea is to work around the
central concept of a Builder, a
value that knows how it should fill
up a memory buffer. Internally, a
Builder is a difference list of these
buffer-filling actions. Combining
these two points, we end up with a
packed representation of data with
efficient append operations. And,
just as important, we’re guaranteed
that the bytes will be copied precisely
once into our final buffer.

Figure 1. Pong benchmark. Requests/second (higher is better).

Go
lia
th

To
rn
ad
o

PH
P

W
ins
to
ne

No
de

Sn
ap

Ha
pp
sta
ck

Ye
so
d

W
ar
p

3,237 3,416 3,417 4,660

18,654

35,272 35,811

64,028

81,701

IC-15-03-funweb.indd 82 4/6/11 3:52 PM

Warp: A Haskell Web Server

MAY/JUNE 2011� 83

It quickly became apparent that
the Builder abstraction would be
useful outside the context of HTML
generation. The Yesod Web frame-
work immediately used it for gen-
erating CSS, JavaScript, and JSON.
Meier split off the Builder datatype
and its associated functions into a
separate blaze-builder package.

WAI and Warp rely heavily on
blaze-builder for constructing
responses. Applications always send
their response bodies to the server
in the form of Builders. This lets
Warp efficiently append the body to
the response headers, meaning that,
for many common responses, Warp
uses only a single memory buf-
fer and makes a single system call.
As a nice finishing touch, blaze-
builder provides a helper function
to automatically prepend the length
of each chunk of an HTTP response
when using chunked transfer encod-
ing. This function has taken care of
the complicated logic of concatenat-
ing Builders to an optimal size and
backtracking to fill in the chunk size
in the header, and it’s available for
all Haskell HTTP servers to use.

Blaze-Builder-Enumerator
At one point, I needed to write a pro-
gram at work to modify XML files.
Because it was simply modifying
attributes, this was a perfect case for
a streaming algorithm, and thus a
great use case for Enumerators. Mil-
likin had already written a parsing
wrapper for the C language libxml
library, but no method existed for
generating output.

The simplest approach would be
to convert each XML event into a
ByteString. However, this would
involve creating a lot of small buf-
fers. A better approach would be to
use Builders, but consuming the
entire stream of Builders, concat-
enating them, and then writing to a
file would involve keeping the entire
body in memory, something I wanted
to avoid.

Instead, I ended up writing
an Enumeratee that would take a
stream of Builders and use them to
fill up buffers. When a buffer filled,
the Enumeratee would wrap it in a
ByteString and send it down the
pipeline to the Iteratee. This meant
that the code produced optimally
sized ByteStrings, with minimal
buffer copying, and used constant
memory. Meier has since taken the
code, improved it, and released it as
blaze-builder-enumerator.

It turns out that the exact same
requirements exist when writing a
Web server. The application can give
the server chunks of data of any size,
and the server wants to concatenate
these into optimally sized buffers
to minimize system-call overhead,
without using large amounts of
memory or performing multiple buffer
copies.

In Warp, when the application
returns a ResponseEnumerator
response, the flow control will pass
back and forth between the server
and the Enumerator. The Enumerator
will feed chunks of Builders to the
server. The server then fills up a
memory buffer using those Builders.
Once the buffer is filled, the server
will send its contents over the socket
and release the buffer. This means
the data is copied precisely once from
the Builder into the final buffer.
Additionally, the server must allo-
cate only a single buffer, so memory
usage is constant.

Web Application Interface
The WAI is a low-level interface
between Web applications and back
ends in Haskell. It’s generic enough
to support standalone servers such
as Warp, as well as options like the
Common Gateway Interface (CGI),
FastCGI, and development servers
that automatically reinterpret your
code during development. Warp is
the premiere WAI back end.

The WAI concept is very simple:
an application is a function that takes

a request and returns a response. The
Request datatype contains informa-
tion such as the requested path, query
strings, request headers, and remote
host/port. One thing noticeably lack-
ing from this list is the request body.
To understand why, consider the fol-
lowing type signature:

type Application = Request →
Iteratee ByteString IO Response

The Application returns its
Response inside an Iteratee, so
it consumes the request body from
there. As mentioned previously,
Warp performs all its operations
inside the Iteratee monad; this
means that calling the Application
is simply another step in that pro-
cess. The beauty of the Enumerator
approach is that these actions com-
pose together so easily.

Three types of responses exist,
represented by different data con-
structors. ResponseFile contains a
status code, a list of response head-
ers, and the path to a file. This allows
back ends like Warp to use an effi-
cient sendfile system call for send-
ing the file contents to the client.

ResponseBuilder contains a sta-
tus code, a list of response headers,
and a single Builder value. This is
the most commonly used response
type. In most programming lan-
guages, this would require stor-
ing the entire response in memory.
Haskell, on the other hand, uses lazy
evaluation by default, meaning the
value will compute on demand. So,
we can efficiently encode very large
responses as this single value, and
the application will consume mem-
ory only as needed.

The most interesting type of
response is ResponseEnumerator,
which lets an application produce
responses while interleaving impure
actions. One example usage would
be to stream a large database response
to the client. Although we could
do this using ResponseBuilder, it

IC-15-03-funweb.indd 83 4/6/11 3:52 PM

The Functional Web

84	 www.computer.org/internet/� IEEE INTERNET COMPUTING

would require reading the entire
database response into memory and
then sending it. With Response
Enumerator, control will pass between
an application and the back end. As
soon as Warp has enough data to fill
a buffer, it will immediately send the
data to the client and then release
the memory the previous pieces have
consumed.

Request Parsing
The Warp team was able to imple-
ment a clear, concise, safe, and effi-
cient request parser, thanks in large
part to Haskell’s high-quality Byte
String library (from Don Stewart
of Galois, Duncan Coutts of Oxford
University, and David Roundy of
Oregon State University). The library
provides a high-level interface to C
byte arrays with an elegant mix of
expressiveness and efficiency. We
can use ByteStrings in much the
same way as linked lists, through
versions of many idiomatic list
functions familiar to functional
programmers. They also interface
directly with standard C I/O facilities
with zero conversion. The API func-
tions are bounds-checked by default,
although unchecked versions are
also available. Warp uses these in
several cases when the operation is
statically known to be safe.

An HTTP request begins with
a request line and an unspecified
number of header lines. The end of
the headers is indicated by a blank
line. Lines are delimited by pairs of
carriage return and linefeed char-
acters, and headers are key-value
pairs separated by colons. Scanning
the input for new lines and colons
is performed efficiently via memchr.
The request parser then extracts
data using copy-free substring
functions.

Although the protocol syntax is
very simple, a few minor complica-
tions exist. A single read block can
contain multiple lines, and lines
can span multiple read blocks. We

also have several exceptional condi-
tions to look out for: the client might
take too long to send us data or
close the connection without send-
ing the terminal blank line. We also
need to prevent attackers from fill-
ing up memory by sending an infi-
nitely long header.

GHC’s exceptions and lightweight
threads let us abstract away the
timeout and unexpected end-of-file
cases into a single blocking function
call. Our parser is responsible only
for ensuring that the header size is
under the allowed maximum.

The parser is implemented as a
recursive Iteratee of four argu-
ments: the current accumulated
header size, two difference lists (one
accumulating segments of the cur-
rent header line, and one for com-
pleted header lines), and the current
input buffer. In addition to providing
O(1) appends, using difference lists
here preserves tail call optimization.

Each recursive call consumes some
data, appends it to the current line,
and increments the header size. Once
the parser reaches a line terminal,
if the completed line isn’t empty, it’s
appended to the list of headers. It then
creates a new difference list for the
next line, and the function recurses.
If the completed line is empty, we’ve
reached the end of the header. Any
data remaining in the input buffer
goes back to the Enumeratee, and the
function returns.

Timeout Handling
A relatively recent attack vector for
Web servers is a slowloris attack:
an attacker opens as many con-
nections as possible to a server and
sends trickles of data across them in
an attempt to exhaust the server’s
connection pool. This attack can work
especially well because it requires so
few resources from the attacker. The
standard response is to introduce
timeouts: if a client doesn’t send any
data after a specified amount of time,
disconnect the socket.

The first version of Warp used
the timeout handling code included
with GHC. Unfortunately, this was
not a very good fit; it didn’t scale
well, and, even worse, introduced
deadlocks into the code. (GHC has
since fixed this bug, but most users
are still running affected versions.)
So, Warp needed a more elegant
solution.

This was another opportunity for
the Haskell Web development com-
munity to shine: Gregory Collins of
Google and Jeremy Shaw of See
Reason Partners (who work on the
Snap and Happstack frameworks,
respectively) had already been col-
laborating on more efficient timeout
code. They had a great start, but
the initial code was slower than we
hoped for. I made two changes to
their approach:

•	 The original code used MVars.
This is a thread-safe, mutable
variable that would usually be the
perfect fit for our use case. Unfor-
tunately, the locking overhead
was simply too much. I switched
to using an IORef instead. Unlike
an MVar, an IORef is simply a
mutable variable without any
locking. However, it provides an
atomic modify operation, which
takes advantage of Haskell’s ref-
erential transparency to avoid
race conditions without locking.

•	 A lot of complexity was involved
in managing a mutable, thread-
safe hash table for storing the
timeout information. Because
we know that all functional pro-
grammers only really know about
lists, I decided to try them out
here, with much success.

The entire timeout library is
less than 70 lines of code. It works
by creating a timeout manager
thread and an IORef holding a list
of handles. Each handle contains an
action to perform on timeout (kill-
ing the appropriate thread) and its

IC-15-03-funweb.indd 84 4/6/11 3:52 PM

Warp: A Haskell Web Server

MAY/JUNE 2011 85

state: active, inactive, paused, or
canceled.

The timeout thread simply loops
forever, swapping out the list of han-
dles with an empty list, killing any
inactive threads, and then prepend-
ing the remaining handles to the
mutable variable again. This takes
advantage of two special functional
programming features:

•	 Haskell can provide an atomic
IORef action for “pure” (that is,
side-effect free) actions, so swap-
ping out the lists is possible with-
out incurring expensive lock
penalties.

•	 Lists in Haskell are generally sin-
gly linked, meaning it’s cheap to
attach new values to the begin-
ning but expensive at the end.
Because we don’t actually care
about preserving handle order in
our timeout code, our manager
can create a handle difference list

([Handle] → [Handle]) and once
again use IORef’s atomic actions
for prepending the elements to
the list.

For the managed threads them-
selves, the operations are fairly
simple: tickle, pause, and cancel
set the state to active, paused, and
canceled, respectively. Once again,
this all occurs using IORef’s atomic
actions, so there are again no lock-
ing issues. The result is slowloris
attack protection, which uses just
a few simple actions and a single
manager thread.

W arp allows Haskell develop-
ers to write Web applications

at a high level and still achieve
very fast applications. Warp is cur-
rently the basis of the Yesod Web
Framework’s production deployment,
and will be used by the Happstack

Web Framework in the near future.
Due to Warp’s small code size, it can
run anywhere, from large dedicated
servers to embedded devices.

Acknowledgments
I thank Matt Brown for contributing to the

“Request Parsing” section of this article.

Michael Snoyman worked as an actuary in

the US insurance industry before mov-

ing halfway around the world to Israel.

He’s currently a developer at Suite Solu-

tions, providing DITA XML-based con-

tent life-cycle implementation services,

and is the founder and lead developer of

the Yesod Web Framework. Snoyman has

a BS in mathematics from the University

of California, Los Angeles. Contact him at

michael@snoyman.com.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

Silver
Bullet
Security
Podcast

Sponsored by

www.computer.org/security/podcasts
*Also available at iTunes

In-depth interviews
with security gurus.

Hosted by Gary McGraw.

IC-15-03-funweb.indd 85 4/6/11 3:52 PM

