
Multi-Middleware Web Services 
 

Steve Vinoski 
Chief Engineer of Product Innovation 

IONA Technologies 
200 West St. 

Waltham, MA 02451 
vinoski@iona.com 

 
A few years ago, integrating applications simply required putting the right middleware in 
place. Today, however, the proliferation of different middleware approaches and 
technologies has complicated matters. Application integration now implies middleware 
integration. Essentially, we need “middleware for middleware”1 that allows us to non-
invasively integrate disparate middleware systems. The economic downturn of recent 
years has led many to question large and expensive “rip and replace” projects. Such 
projects, which attempt to homogenize the enterprise by ripping everything out and 
replacing it with the latest silver bullet, almost always fail. IT groups instead prefer to 
leave working systems in place and get them to talk to each other without changing them, 
regardless of which suppliers they come from, which technologies they employ, what 
languages they’re written in, or what protocols they speak. 
 
Middleware integration requires finding abstractions rich enough to represent a wide 
variety of design approaches, and yet concrete enough to embrace and support the 
numerous technologies used for service implementation. Naturally, finding practical 
middleware integration approaches is not easy. For example, early Web Services adopters 
embraced SOAP because it was much easier to add to new systems than other traditional 
middleware. However, SOAP is only a network protocol, and thus it can’t provide all the 
abstractions necessary for multi-middleware integration. In fact, SOAP does nothing to 
help link together systems that are already deployed, because adding SOAP to such 
applications is just as invasive as previous middleware approaches. Invasive changes to 
working systems are error-prone, and they result in expensive and time-consuming 
retesting and redeployment. 
 
In an ideal world, multi-middleware integration would allow you to create new business 
services by getting your existing systems to interoperate without changing them at all. 
But isn’t this what Enterprise Application Integration (EAI) is all about? EAI proponents 
have long claimed that it would supply easy, seamless, and non-invasive integration, but 
in practice, this has usually not been the case. Typical EAI projects cost millions of 
dollars, run well behind schedule, and ultimately fail to deliver viable integrated systems. 
 
Fortunately, Web Services technologies provide exactly the abstractions required for non-
invasive multi-middleware integration. Specifically, the features and flexibility of the 
Web Services Description Language (WSDL)2 enable you to “reverse engineer” existing 
applications to prepare them for integration with other disparate systems. WSDL types 
and port/interface definitions support logical descriptions of existing services, while 



WSDL binding extensions define physical connections to those services not in terms of 
SOAP, but in terms of their existing protocols and message formats. Combined with the 
right underlying “middleware for middleware” support, WSDL-based abstractions and 
bindings can be used to create integrated systems that employ multiple protocols, 
multiple message formats, and multiple interconnection patterns. 
 
One project using WSDL in this fashion is the Apache Web Services Invocation 
Framework (WSIF).3 Because SOAP alone is not enough for real-world integration, the 
goal of WSIF is to supply a Java API that allows an application to transparently invoke 
web services via a variety of protocols. With this approach, service contracts can be 
defined abstractly using the logical features of WSDL. Then, for each service instance, 
these logical definitions can be joined with the appropriate physical bindings that define 
connectivity to that service. The logical/physical separation allows client applications to 
depend only on the logical portion of the WSDL definition, keeping them independent of 
the actual protocols and message formats required to communicate with a specific service 
instance. Client applications rely on separate WSIF providers that support connecting to 
services implemented using EJB, JMS, JCA, or local Java objects. These providers can 
be dynamically loaded, allowing the actual binding to a service to be chosen at runtime. 
Adding support for services implemented using another middleware system, such as MQ 
Series, simply requires writing a new provider. WSIF makes these different provider 
implementations completely transparent to client applications. 
 
The WSIF approach is definitely a step above the typical non-abstracted, SOAP-only web 
service applications that other frameworks support. Ultimately, though, multi-middleware 
integration requires features beyond those of WSIF. In fact, multiple approaches are 
needed, depending on whether or not non-invasive integration is required. 
 
Non-invasive multi-middleware integration requires WSDL routers that can support 
multiple protocols and multiple message formats simultaneously, bridging each as 
required. For example, if application A and application B are based on the same 
middleware, the WSDL router should pass their messages straight through without any 
conversions. For applications that use the same message formats but different transports, 
such as one using SOAP over HTTP and the other using SOAP over MQ, the router 
should perform protocol conversions but avoid unnecessary message conversions. This 
“on-demand” conversion approach makes the WSDL router as efficient as possible 
without penalizing the integrated applications with unnecessary conversions into 
intermediate formats or protocols. 
 
In cases where application changes for integration are acceptable, however, multi-
middleware capabilities can be added directly to each application. This allows them to 
talk directly to each other through their own internal multi-middleware switches, rather 
than relying on a centralized router. In essence, this approach is much like WSIF, except 
that it’s not limited only to clients. It allows services to be implemented such that they 
too can be hosted transparently over multiple protocols and messaging formats. 
 



While Web Services focus is often limited to only SOAP-based applications, it’s clear 
that WSDL fulfills an even more important role in intra-enterprise consolidation and 
integration. Projects like Apache WSIF, and products such as IONA’s Artix4, which 
already supports the multi-middleware routing and switching approaches described here, 
are using WSDL abstractions and binding extensions to maximize the value of existing 
IT assets. The days of expensive, invasive, and failing EAI mega-projects are over. 
 
References 
1. Vinoski, Steve. “Where is Middleware?” IEEE Internet Computing, 6(2), Mar/Apr 

2002, pp.83-85. 
2. Web Services Description Language (WSDL) Version 1.2, W3C Working Draft, June 

11, 2003, http://www.w3.org/TR/wsdl12/. 
3. Apache Web Services Invocation Framework, http://ws.apache.org/wsif/. 
4. IONA Artix, http://www.iona.com/products/artix/artix-relay.htm. 
 


