
RISEtt

RISE++:
A Symbolic Environment fbr

Scan-Based Testing

other scan architeaures.

&AN TEST TECNNIQUES provide
hardware access and control that is
superior to traditional functional
test strategies. Though sequential
circuits often contain nodes that are
difficult or impossible to access
with functional tests, the reduction
of these circuits into the combinato
rial circuits required by scan testing
allows access to all such nodes.

Scan test techniques result in a
serialized view of circuit nodes be
cause the nodes are chained to-
gether into shift registers called
scan rings. Each individual bit in a
scan ring provides control and ac-
cess for a particular circuit element.
Regardless of its regular functional-
ity, we can generally test a circuit
with scan by shifting in a control
state, applying functional clocks,
and then shifting out the new state
and comparing it with the expected
bit values. In effect, this serialized
view abstracts the functionality of
the circuit for testing purposes.

tion of each scan bit and any rela-
tionships it has to other bits in the
scan ring can be nearly impossible,
especially when performing board-
level tests involving multiple scan-
nable chips. Scan techniques may
abstract the functionality of the
hardware under test, but in return
they greatly increase the amount of
information that must be managed
during debugging.

The software driving typical test
systems is usually designed to en-
sure rapid and accurate production
testing, not to aid with debugging.
Any debugging features provided
by such software normally facilitate
only general control of the test
hardware. Thus, test program devel-
opers must rely on simulation envi-
ronments and custom test
harnesses to debug their software,
hoping that their tools are accurate
enough to minimize the effort re-
quired to get their programs run-
ning correctly on the actual test
system. Unfortunately, even the Unfortunately, this same access

and control afforded by scan test tech- ed values. Isolating the cause of the fail- best simulations cannot predict every
niques can also be the source of testing ure can be a daunting task when hun- problem that will be encountered dur-
problems. A failing scan test means that dreds or thousands of bits are involved ing actual testing procedures.
one or more scan bits contain unexpect- in a single test. Keeping track of the func- By managing the observation and

46 0740.7475/93/0600-0046$03.00 0 1993 IEEE IEEE DESIGN & TEST OF COMPUTERS

control afforded by scan testing tech-
niques, the Remote Interactive Scan En-
vironment (RlSE+t) provides a powerful
development and debugging facility for
scan-based testing of the HP/Apollo Se
ries 10000 workstation. RISE-H executes
on a separate workstation and commu-
nicates with the system under test via a
local area network. Test engineers can
easily develop and debug scan tests un-
der RISE-H because it tracks many trivi-
al but important details for them and
provides them with precise control over
the test hardware. RISE+ effectively rais-
es the level of abstraction and allows test
engineers to concentrate on the prob-
lem at hand.

DN 1 CKIOO scan architecture
The scan subsystem of the HP/Apollo

Series 10000 workstation’ includes the
scannable hardware and the software
that drives it. Users can plug various
boards, including CPU boards, memory
subsystems, and graphics boards, each
populated with a number of scannable
chips, into one of eight slots in the main
system bus (called the X-Bus) of the
DNlOOOO workstation. Each board also
contains one scan and clock resource
(SCR) chip. This chip allows control of up
to eight separate scan path ports, with up
to one internal and one boundary or ex-
ternal scan ring connected to each port.
By convention, no more than four scan-
nable chips reside on any scan path.

Software executing on the service pro
cessor (SP) of the machine performs all
scan operations. The service processor is
a Motorola 68020 used for booting and
testing the system. Each SCR connects to
a systemwide diagnostics bus (DBUS)
that the service processor accesses via a
three-register interface called the diag-
nostics bus interface (DBI). Through the
DBI, the service processor can address
any individual SCR, or it can broadcast
commands to all SCR chips in the system.
Figure 1 illustrates the Series 10000 scan
hardware architecture.

In addition to implementing scan

JUNE 1993

DBUS

CPU board

El SCR

Scannable system

Scannable
board

Y-Bus ~

~ Figure 2. Scan hardware hierarchy.

most scan-in and scan-out operations
, appear to occur at the chip level, regard-

Figure I. HP/Ape//o Series I 0000 stun
hardware architecture.

less of the number of chips chained to-
gether on each scan path. This
distinction is very important; without it,
some scan vector data would be need-
lessly dependent upon board topology.
Chip-level scan l/O permits the reuse of
chip test vectors for board-level testing.

control functions, each SCR distributes
and controls the clocks for the board it
resides on. The SCR allows clocks to be
started, stopped, burst, and pulsed for
each scan path independently.

The scan subsystem driver software
allows access to SCR operations through
a hierarchical hardware access model
for its clients. The model reflects the hi-
erarchy present in the hardware design:

n a system contains scannable boards
n a board contains scan paths
n a path contains scannable chips
n a chip contains scan rings
n a ring contains scan bits

To use this model, application soft-
ware specifies access to any scannable
component of the hardware via scan
addresses whose values reflect the place
of the component in the hierarchy. The
hierarchical view of scannable hard-
ware provided by controllers like the
SCR has also proven effective for board-
level built-in self-test2 Figure 2 graphical-
ly depicts this scan hardware hierarchy.

One important aspect of the hierar-
chical hardware access model is that

All in all, the hierarchical hardware
access model simplifies the amount of
state information the scan subsystem
driver software must internally maintain.
It provides a clean, powerful abstraction
of the hardware domain to applications
such as RISE-H.

RISE++ architecture
We can accurately describe RISE++ as

a symbolic hardware debugger because
it provides the ability to symbolically ma-
nipulate each component of the hierar-
chical hardware access model. In other
words, each scannable entity in the sys-
tem, including boards, chips, and scan
bits, can be accessed and controlled by
name. This aspect of RISE+ is analogous
to the symbolic access that software de
buggers provide for programming lan-
guage variables and functions.

RISE++ is well integrated with the Unix
environment. It follows the Unix philoso
phy of providing simple tools that can be
combined to create other specialized,

47

Extensible
command line

interface

1 Interactive command functions 1

Machine under test

Figure 3. Architectural layers of/?/SE++.

more powerful tools as the need arises.
The alternative of attempting to imple-
ment RISE++ as a fixed set of debugging
tools would almost certainly have failed,
since it would have been impossible to
foresee all the circumstances in which
RISE-H would prove useful.

Similar to most software systems,
RISE++ is composed of several layers of
functionality:

n extensible command line interface
n interactive command functions
n naming service for scannable

entities
n object-oriented scan hardware

model
n remote procedure call (RPC) soft-

ware

Figure 3 graphically depicts the rela-
tionships between these layers.

Extensible command line inter-
face. Via the command line interface,

48

RISEtt

users can issue RISE-H commands and
extend RISE-r-t to fit their particular test
requirements. Ousterhout has observed
that “a general-purpose programmable
command language amplifies the pow-
er of a tool by allowing users to write
programs in the command language in
order to extend the tool’s built-in facili-
ties.“3 The Tool Command Language
(Tel) developed by Ousterhout provides
the basis for the RISE-H extensible com-
mand line interface. Tel is composed of
a library of C functions that provides

W command language parsing
n a set of built-in commands
w functions enabling extension of the

built-in command set

The Tel built-in commands provide
programmability for the RlSE+t com-
mand line interface. Commandssuch as
Eval, For, Foreach, and If provide pro-
grammable control constructs. Other
commands such as Proc and Set allow
for the creation and manipulation of
command procedures and variables.
Other commands enable users to ma-
nipulate mathematical expressions, lists,
strings, or files. Still others provide ways
for users to interact with the underlying
operating system.

Tel command arguments, variable
values, and command return values are
all ASCII strings. Each command inter-
prets its arguments as it wishes. For ex-
ample, the Expr command expects its
arguments to be strings of numbers and
mathematical operators. All string return
values from command functions are au-
tomatically displayed to the user. Unix
tools such as 1s and grep can also be in-
voked from the command line, just as
they are called from a Unix shell. Users
do not have to reinvent the functions
provided by common Unix tools.

RISE-H extends the built-in command
set of Tel with commands specific to the
scan-testing problem domain. These in-
clude commands to

w manipulate scan vector data

w access SCR and DBI registers
n access files containing test vectors
n interact with the scannable entity-

naming service
w determine the configuration of the

hardware
n address different X-Bus slots
n perform operations on scannable

entities
n control functional clocks

The RISE-H command line interface
provides 149 commands in all, includ-
ing the built-in commands of Tel. Exten-
sive documentation for each RISE-H
command is readily available from the
command line via the Unix Man
command.

Users can extend the built-in com-
mand set by writing their own com-
mand scripts, called procs. Like regular
Unix commands, user-defined procs
can take arguments and return values.
Procs can call built-in commands or oth-
er procs as required. Once defined, a
command implemented by a Proc is in-
distinguishable from a built-in com-
mand. Examples of procs and built-in
commands appear later.

By providing a straightforward pro-
grammable interface to the scan hard-
ware, RISE-H extends the arena of test
development to hardware design engi-
neers and manufacturing personnel
who do not necessarily possess the train-
ing required to create test software. The
simplicity of the RISE+t command inter-
face allows it to serve as a common lan-
guage that hardware designers, test
engineers, and manufacturing person-
nel can all use to communicate hard-
ware problems and share test solutions.

Naming service. The Processor Con-
troller microcode for the IBM 3081 pro
vided access to machine registers via
scan by translating symbolic register
names to the physical scan addresses of
the bits comprising them! The associa-
tions of the symbolic names and the
physical scannable entities they repre-

IEEE DESIGN & TEST OF COMPUTERS

sented were stored on disk in translation
tables. Under RISE+, such groups of log-
ically related scan bits are called scan
buses. The scan operations that exam-
ine and change the bits making up the
register are completely transparent to
the user. The physical locations of the
scan bits making up a scan bus do not
matter; they need not be contiguous nor
even reside on the same chip.

Symbolic manipulation of chains of
scan bits requires

n a descriptive identifier for each of
the scan bits

n knowledge of the ordering of the
scan bits within the scan rings

n knowledge of the number of scan
bits in each scan ring

Without this information, software
like RISE+ cannot properly format scan
vector data nor allow accurate access
and control of individual scan bits.

A separate tool called the vector con-
figuration file compiler (VCFC) trans
lates a textual vector configuration file
(VCF) containing names for boards,
chips, scan bits, and scan buses into an
associative database based on Unix
ndbm files5 Some of the names present
in a vector configuration file come di-
rectly from the hardware design netlists,
while many of them are created by users
for customization purposes.

Each entry in the databases contains
an association of a name character
string with information about the scan-
nable entity it represents. To prevent
name clashes on boards with multiple
instances of the same chip, the compil-
er treats each chip declaration in the
vector configuration file as a different
naming scope. It requires all scan bit
and scan bus names to be prefixed by
the name of the chip containing them,
as in chip-name.bit-name.

Because the compiler program is a
separate compilation tool, RISE+t also
allows names to be defined from its
command line at runtime. Names de-

JUNE 1993

fined via RISE- are not added to the
name database files, however, to pre-
vent them from becoming filled with in-
formation that was only relevant for one
debugging session. Using VCFC to com-
pile a vector configuration file is the only
way to create or modify scan name
databases.

The use of the Unix ndbm facility for
scan name databases has several advan-
tages. The most important advantage is
that scannable entity-naming informa-
tion can be located rapidly; the ndbm
facility normally requires only one or
two disk accesses to locate an item.5
Another advantage is that names are dy-
namically loaded as they are required.
Without this ability, RISE+ would have
to load all names when it started up, re-
sulting in slow start-up times and unac-
ceptable memory requirements. Since
nearly 50,000 names are used to de-
scribe all the scannable entities present
in a fully loaded Series 10000 system,
dynamic loading allows each name to
be loaded from the databases as it is ref-
erenced. This approach minimizes memo
ry usage and spreads name loading time
out over the life of the RISE-H process.

Object-oriented scan hardware
model. A large portion of RISE-H was
designed and implemented using
object-oriented software development
techniques. These techniques focus on
the entities that exist in a problem
domain and the operations that can be
performed upon them. Thus, an object-
oriented view of a system differs from an
algorithmic view because the latter mere
1y“highlight.s the ordering of events.“6

The agents of the scan-testing prob-
lem domain that are modeled by the
object-oriented RISE++software include
scan vectors, scan bits, scan rings, scan-
nable chips, and scannable boards. The
hierarchical nature of the hardware do-
main is directly reflected in the construc-
tion of the object model: Boards are
composed of chips that in turn are com-
posed of scan rings composed of scan

rise> size 4
Slot 4:cpu, board type 5, revision 2

path O/device 0 ip, revision 4
path l/device 0 mmu, revision 6
path 2/device 0 cba, revision 9
path S/device 0 cbd0, revision 2
path 3/device 1 cbd 1, revision 2
path 4/device 0 fpc, revision 0
path 5/device 0 frfl, revision 1
path 5/device 1 frfu, revision 1
path G/device 0 alu, revision 0
path G/device 1 mul, revision 0
path 7ldevice 0 amd298 18,

revision 0

Figure 4. Size command example.

bits. These objects are accessed via ab-
stract address objects, conceptuallysim-
ilar to the methods by which they are
physically accessed in the hardware
domain.

i When RISE+t is invoked, it sizes the
system under test and creates a hierar-
chy of software objects that models the
scannable hardware to be tested. The
example in Figure 4 shows a result of is-
suing the Size command for X-Bus slot 4
(the “rise>” text is the command prompt).

Once the RISE++ process constructs this
internal software model, each scan-related
command is ultimately performed by the
software object representing the hardware
entity being acted upon.

The object-oriented software used to
model the hardware under test is written
in the C-H programming language.7 C+t
was chosen because of its efficiency,
strong type checking, and facilities for
encapsulation, dynamic binding, and
inheritance. The importance of these
features to the software engineering
aspects of RISE+ cannot be overem-
phasized. In fact, quite likely the devel-
opment of RISE-H would have failed
had it not been for the use of C-H.

Remote procedure call software.
While others have described remote
procedure calls (RPCS),~~~ I briefly ex-

RISEtt

plain their use in RISE+ to show the
benefits of remote testing. Each call to a
function in the driver software from the
rest of RISE-H is transparently converted
into a remote procedure call that is sent
across a local area network to the sys-
tem under test. A small remote scan
server executing on the system under
test processes the request, invokes the
desired driver function, then packages
up any return values and sends them
back across the network to the caller.
The RISE-H software that makes calls to
the driver is completely unaware that
such calls execute on another machine.

A major benefit provided by the use
of remote procedure calls is that very
few resources are required of the system
under test. The scan remote procedure
call server (ScanRS) program that servic-
es remote requests for scan operations
requires only 20Kbytes of RAM space
within service processor memory. Thus,
if the service processor correctly exe-
cutes from its memory and successfully
communicates with the local area net-
work hardware, the machine can be
tested and debugged using RISE+ from
a remote location.

Another advantage afforded by the
use of remote procedure calls is that
RISE+ executes on top of a Unix operat-
ing system on the remote client ma-
chine. Thus it can provide a much
easier-to-use environment than if it had
to function alone on the system under
test. A stand-alone program cannot rely
upon the features of an operating system
to provide services such as file l/O, com-
mand line editing, and process manage-
ment. These features are usually difficult
to develop in a stand-alone environ-
ment, so most test facilities do not pro-
vide them. Because it executes remotely
on a client workstation, RISE-H fits di-
rectly into the productive computing
environment offered by Unix.

A third benefit of the employment of
remote procedure call techniques
comes from the remote aspect itself. Sev-
eral systems can be accessed from one

50

client workstation running RISE+. The
user can easily control and observe test-
ing of multiple machines simultaneous-
ly. This particular use of remote
procedure call techniques enables re-
search and development engineers to
help with difficult testing problems in
the manufacturing plant without having
to leave their offices.

The use of remote procedure calls
contributes very little to the time re
quired to perform most remote scan op-
erations. Measurements indicate that
RISE+ can perform scan I/O operations
at a level that is 50% of the throughput
achieved by programs running directly
on the service processor of the system
under test. This efficiency level has prov-
en more than adequate for interactive
test debugging and development.

Test examples
The various services provided by

RISE+ allow users to develop many dif-
ferent types of tests. Simple tests general-
ly verify the integrity of scan hardware
such as the SCR and the scan rings,
while the most complex tests can isolate
faults within cache RAM.

Scan ring I/O. The ability to read
and write the contents of scan rings is
one of the most important requirements
for RISE*. Sread and Swrite commands
perform these operations. The following
example shows typical uses of these com-
mands. Here, the AMD29818 device on
CPU scan path 7 is being read and written:

rise> sread amd29818
I\
Dl\
I
rise> swrite amd29818 DO
rise> sread amd29818
I\
DO\
I

The first Sread command displays the
contents of the 8-bit AMD29818 scan

path as the hexadecimal value Dl. Then
the Swrite command modifies the value
to DO, and the second Sread command
verifies that the value of the scan ring did
indeed change. Values for the scan bits
making up a ring are always displayed in
the same order that they are scanned
out of the hardware, with leading zeros
always being displayed. Up to three ex-
traneous bits may appear on the end of
the displayed vector value due to the
hexadecimal output format.

The curly brace and backslash char-
acters surrounding the displayed scan
ring data values allow the output of
Sread to be assigned to variables and
used directly as input for other com-
mands. They also help readability by al-
lowing long scan vectors to be split
across multiple lines. Using Sread vec-
tors as input to other commands corre
sponds to their usual handling, since
they are typically compared against
known good vectors or are slightly mod-
ified by programming and then scanned
back in. The next example, in which the
scan ring of one chip is written with the
data read out of a different chip, shows
the typical treatment of full Sread vectors:

rise> swrite cbd0 [sread cbdl]

The square brackets cause the Sread
command to be performed and its re-
turn value to be substituted for it on the
command line as the value argument to
Swrite.

Scan buses can be accessed in a very
similar manner, but the compiled vector
configuration file must be loaded first
via the Names command:

rise> names compiled-mem-names

Here, compiled~mem~names corre
sponds to the Unix pathname of the direc-
tory holding the vector configuration file
name databases for the memory board.
Once the names are available, a scan bus
access can be done; see Figure 5.

First, the entire scan ring for the chip

IEEE DESIGN & TEST OF COMPUTERS

rise> swrite mmc0 0
rise> swrite mmcO.cb-addr 55
rise> sread mmcO.cd-addr
0x55
rise> sread mmc0
I\

1

Figure 5. Scan bus access.

called mmc0 is set to zeros. Then, a 7-bit
scan bus called mmcO.cb-addr is set to
the hexadecimal value 55 (the leftmost
bit of the value is not used). It then is
read back to verify its new value, and the
entire mmc0 scan ring is read out. As
expected, the example output shows
most bits as zero except for those corm-
sponding to the mmcO.cb-addr scan
bus. Unlike scan ring data, scan bus val-
ues are displayed in regular MSEtoLSB
fashion with no leading zeros. Up to
three extraneous leading bits may ap
pear in the displayed value due to the
hexadecimal output format.

The scan bus example hints at the
power of the symbolic access provided
by RISE+. Attempting to set the value of
the mmcO.cb-addr register by setting in-
dividual bits in the scan ring would be
extremely error-prone and time-
consuming, as would attempting to read
its value by piecing together the values
of the bits. With RISE++, the user can
concentrate on the logical state of the
hardware and let the environment han-
dle all the necessary translations.

CPU register access. The example
code in Figure 6 shows a user-defined
Proc. This Proc can display the contents
of the general-purpose registers (GPRs)
of the integer processor unit (IPIJ) of the
Series 10000 CPU-TX board.

The Stop command stops the function-
al clocks so that scan operations may be
performed. The Dip-cmd and Scr com-
mands configure various testability regis-
ters within the integer processor unit and

JUNE 1993

SCR chips to prepare for general-purpose
register access. Next, the loop construct
performs 32 iterations of the sequence of
actions required to read a general-
purpose register. The iterations allow all
32 integer processor unit general-purpose
registers to be read. In that sequence, the
first Swrite sets all bits of the integer pro
cessor unit scan ring to 0.

The second Swrite sets the value of a
scan bus within the integer processor
unit to the address of the general-
purpose register to be read, then scans
the entire integer processor unit vector
into the hardware. After Dbi-cmd pulses
the functional clocks, Sread scans out
the value of an integer processor unit
scan bus containing the value of the
general-purpose register. The Set com-
mand stores it into the value variable.

Finally, the Print command displays the
register number and its value to the user.

The example in Figure 6 shows the
use of RISE++ abstractions together with
direct hardware access functions. One
abstraction is the use of the scan buses
ipugpr-addr and ipu.gpr-val to symbol-
ically access the general-purpose regis-
ter addresses and values. The Dbi-cmd
and Scr commands provide direct ac-
cess to the DBI and SCR registers. The
loop construct provides iteration, and
the iteration variable reg is also used to
set up the address of the general-
purpose register to be read. (J’he Hexpr
command merely returns the value of
reg in hexadecimal format.)

As shown in Figure 7, users may in-
voke the dumpgprs procedure by typ-
ing its name at the RISE++ command

I1

RISE++

t-i- dump_gprs
IP~G~:~~l
IP REGlSTER : 01 OoOO3F71
IP REGISTER : 02 0007EE31
IP REGl!TER : 03 00007EE3
IP REGISTER : 04 OOOOOO01
If REGISTER : 05 O%OOO93
IPREGISTER : 06 oIlK@OOD
IP REGISTER : 07 OOOOOOIF
IP REGISTER : 08 0000475E
lPREGlSTER:O9OOOWOOO
IP REGISTER : 10 01000127
IP REGISTER : 11 OOOOOOOF
IP REGISTER : 12 OOOOOOlF
IPREGlSTER: 13QoOOOOO7
IP REGISTER : 14 OOOOOOOF
IP REGISTER : 15 00000007
IP REGISTER : 16 OOOOOO7F
lP REGISTER : 17 OOOO3F71
IPREGJslER: 18~
IPluxxlER: 19~
IP~~:20~
IP~Gl~:21~3
IP REGISTER : 22 024D81BB

1P REGlSTER : 24 OOOOOO3F
IP REGlSTER : 25 ooO3F718
IP~~:26~
IP REGISTER : 27 OOOOOQOF
IP REGISTER : 28 OOOFF 184
IP REGISTER : 29 OOOlTl88
IP REGlSTER : 30 OOOOOOOF
IPREGlSTER:3100000000

prompt. They do not have to be aware of
the sequence of scan operations and
clock pulses that dumpgprs performs
to read the general-purpose registers.

One important aspect of the
dump-gprs procedure is the use of
scan techniques to access nonscanna-
ble logic. Access to nonscannable
hardware is similar to traditional scan-
testing techniques. Both require a set-
up of logic inputs, followed by an
application of system clocks, followed
by an examination of logic outputs.
Scan-in and scan-out operations con-

,

trol logic input and observe logic out-
put. Multiple clock cycles are usually
needed to propagate the state of the
nonscannable logic to a point where it
can be observed via scan. Without the
scan buses provided by RISE++, access
to the scan bits that allow control and
observation of nonscannable logic
would be difficult, since these bits are
usually spread out among several chips
on a board. The scan buses allow the
logic to be considered at a functional
level even though it is actually being
accessed via scan operations.

The brevity of the dumpgprs script is
also notable. AC language program that
duplicates the functionality of the script
required approximately 1,000 lines of
source code, yet the Tel script is only 13
lines long. Much of the compactness of
the dumpgprs script results from the
use of scan buses. The values of many
scan bits can be set with one RISE+t
command, while each bit must be set
separately in the C language program.
T’he dumpqprs script shows both the
power of expression in the Tel language
and its simplicity.

Cache RAM testing. While the
dumpgprs script is relatively simple, a
more complex RISE-H test procedure
provides fault detection and isolation for
[he cache RAMS on the CPU-TX board.
This facility is composed of 10 userde-
lined procs consisting of approximately
1,000 lines of Tel code. We developed it
3ver the course of several weeks during
the laboratory debugging of the hard-
ware prototype of the CPU-TX board. De-
velopment proceeded from the bottom
up; that is, we wrote the simpler procs
first and then refined and combined
:hem into larger procs as the need arose.

One notable aspect of the cache RAM
RISE-H procs is that they strongly resem-
3le the code used to simulate them.
3nce the cache test algorithms were ver-
fied on the logic simulator, we used the
YSEtt naming facility to create scan
3use-s that provide the same logical view

of the hardware as presented by the sim-
ulator. The test code was thus easily and
directly translated from the logical simu-
lator environment to RISE+.

Testability features designed into the
CPU-TX hardware simplify the testing of
the cache RAMS, but the testing process
still requires a large number of scan bits
to be controlled and observed. Without
the naming services and debugging fa-
cilities of RISE++, the development of
the cache tests would have required sev-
eral person-months rather than several
person-weeks to complete.

Large RISE++ tests. Reilly et al. hint
at performance problems caused by the
use of scannable entity name translation
for critical functions4 They developed a
compiler to solve their problems. It per-
formed the name translation process
and produced data for entire scan rings,
allowing for the elimination of the trans-
lation overhead from the runtime of the
critical functions.

For large RISE-H test procedures such
as the cache RAM tests, a similar process
dubbed snapping eliminates the thou-
sands of name-to-address translations
that may occur when using the RISE+
naming services. Once a large test Proc
has been developed, debugged, and
readied for production use, the process
initializes input chip vectors via the
RISE+ naming services and takes “snap
shots” of their values. This raw scan vec-
tor data is then used in the production
test procedures in lieu of calling the
naming services for data translation. No
special compiler is used for snapping,
however; the test script itself obtains
data snapshots. The snapping process
results in large RISE++ test procs that ex-
ecute five to 10 times faster than the otig-
inal test scripts.

Other scan archktures
Note that the HP/Apollo Series 10000

scan architecture was developed before
the IEEE 1149.1 boundaryscan stan-
dard’O and differs from it in several ar-

IEEE DESIGN & TEST OF COMPUTERS

eas. This means that RISE-H as currently
implemented cannot handle devices
conforming to that standard.

However, most if not all of the con-
cepts and techniques used to design
and implement RISE+t are applicable to
1149.1 and other scan architectures. For
example, remote testing has been
achieved for 1149.1 architectures via
specialized hardware attached to a host
system that supports the remote display
capabilities of the X Window System.”

Test systems that run on workstations
or personal computers rather than ex-
pensive dedicated test machines have
been described elsewhere.‘*J3 Most
Unix systems provide simple databases
like those used for symbol storage and
retrieval in RISE-H, and other more so-
phisticated database systems are com-
mercially available. The Tel software
used to implement the RISE++ extensi-
ble command line interface is freely
available via the anonymous file transfer
protocol (RP) over Internet from
sprite.berkeley.edu. Discussions con-
cerning it can be found on the Usenet
comp.lang.tcl newsgroup. Finally, com-
pilers for the C+t programming lan-
guage are readily available for most
platforms. All in all, the success of
RISE-H comes from the application of
proven technologies to the scan-testing
problem domain.

Comparison to other systems
Three other remote scan debugging

systems for the HP/Apollo Series 10000
workstation preceded RISE-H. These
programs proved that remote scan test-
ing was possible, and their development
provided many insights into how a tool
like RISE+t should ideally be designed
and implemented. The Advanced Tech-
nology Logic Analyzer System (AT-
~)',I4 was the first of these systems,
followed by the Extensible Logic Analyz-
er (ELA),14 and the first-generation Re-
mote Interactive Scan Environment
(RISE). All three tools aid in the debug-
ging and testing of the prototype hard-

JUNE 1993

ware, but only RISE was intended for use
in a manufacturing environment.

The implementation of ATLAS was
based on prototype versions of much of
the software used within RISE-H. Careful
analysisshowed that substantial efficien-
cy gains could be made by redesigning
the ATLAS scan subsystem driver to ex-
ecute faster and take up less RAM space.
The scan subsystem driver software
used by RISE+ was the result of this
analysis and redesign. Also, improve-
ments could be made in the remote pro-
cedure call server software; this resulted
in the custom remote procedure call
code used in RISE++.

For scannable entity naming services,
ATLAS relied upon compiled Pascal
records to represent scan vectors, and the
Fields of the records could be examined
and modified via a software debugger. De
lrelopels quickly recognized that consider-
sble flexibility could be gained by moving
to an interactive naming service.

The designs of ELA and RISE solved
some of the ATLAS problems. For exam-
ple, the scannable entity-naming
schemes of both ELA and RISE relied
tipon ASCII text files. Loading these files
zither when the program starts up or at
:he request of the user allows users to
easily customize the names of the scan-
nable elements.

However, an effective naming mech-
anism for RlSE+t was needed to im-
prove the speed and efficiency of the
name-loading mechanisms. Measure
ments for ELA indicated that the naming
files for each board in the system took
approximately five minutes to load. For
a system containing seven or eight
boards, the EL4 and RISE naming mech-
anisms were not efficient. The dynamic
name-loading mechanism of RISE-H
overcame these problems.

The command lines of ATLAS and
EL4 provided limited extensibility for
users. RISE provided a graphical user in-
terface rather than a command line,
making predetermined operations sim-
ple to perform. However, users required

All in all, the success

of RISE++ comes hm

he appliccalion of

proven technologies

fo fk scan-testing

prvblem domain.

programmability at the command line
level to create custom test scripts that
solve special unforeseen test problems.
The programmable RISE+t command
line interface grew out of the recogni-
tion of this need.

The Advanced Support System for
Emulation and Test (ASSET) from Texas
lnstruments is arguably one of the most
advanced scan software systems com-
mercially available today.‘* With ASSET,
users can develop and apply tests to
scannable circuits that conform to the
1EEE 1149.1 boundalyscan standard. It
shares many of the same features of
RISE++, such as the naming of scanna-
ble entities and commands for abstract
scan operations.

ASSET executes on a personal com-
puter, which is attached to the system
under test via a direct hardware connec-
tion. ASSET provides no programmable
command language, but it does allow
users to use C+ modules to customize
its graphical user interface for their spe
cific test applications. The fact that the
Series 10000 scan architecture preceded
the 1149.1 boundq+can standard meant
that ASSET was not a viable environment
for Series loo00 test development.

hE VARIOUS m-6 provided
by RISE++ provide a productive environ-
ment for the development and applica-
tion of scan-based tests. The scan
subsystem driver software allows RISE-H

63

RISE++

to provide low-level access to the scan
hardware from its command line. Users
can accurately control the testability fea-
tures of the Series 1 O O O Q workstation from
a remote system. At the same time, the
RISE-H naming services provide a high-
level logical view of the scannable hard-
ware under test by allowing arbitrary
named scan bits to be grouped into logi-
cal scan buses. The use of the program-
mable Tel language enables users to
build upon and greatly extend RISE+
functionality tosuit their needs. Even tests
for embedded nonscannable logic such
as cache RAMS can be easily developed
using scan test techniques due to the
powerful combination of the RISErH fea-
tures described here.

Even though RISE-H is a complex
software system, the use of object-
oriented design and implementation
techniques made it relatively easy to de
velop. RISE-H is composed of approxi-
mately 40,000 lines of C++ and C, and it
required one person-year to design and
implement.

Note that the design goals and archi-
tecture of RISE-H are suitable for most
other scan architectures, including the
1149.1 boundary-scan standard, even
though the current implementation is
specific to the Series 10000 scan
architecture.

The object-oriented design and im-
plementation of RISE+ has resulted in a
system that mirrors the construction and
operations of the hardware domain. The
abstractions provided by RISE-H fit natu-
rally into the problem domain of hard-
ware designers, test engineers, and
manufacturing technicians, thus en-
hancing their productivity.

Forseveral reasons, including an inter-
nal company focus on Hewlett-Packard’s
PA-RISC architecture and a shift away
from the HP/Apollo Series 10000 architec-
ture, work on RISE+tended in early 1991.
I hope the ideas described here, which
made RISE-H a productive and success
ful test tool, will help others who face sim-
ilar test development needs. @

54

Acknowledgments
I thank Craig Bardenheuer, John Ho-

glund, and Mike Ricchetti for their contribu-
tions to the design of the RISE-H system.
Mark Kline and Paul Mageau helped define
the requirements for the extensible com-
mand line interface. Dan Stirk and John
Wood wrote most of the RISE++ Tel procs
that exist today, and in particular Dan was
responsible for the development of the
cache RAM test code and the snapping
process.

Thanks also go to Charlie Matthews, who
helped tremendously with the technical lit-
erature searches required for this article, and
Tom Lynch, who helped obtain the example
RISE-H output. Finally, I thank Craig Barden-
heuer, John Hoglund, Larry Kaylor, Tom
Lyons, and especially Teri Witham for their
help in reviewing and improving the
manuscript.

References
1. B.I. Dervisoglu, “Scan Path Architecture for

Pseudorandom Testing,” IEEEDesign & Test,
Vol. 6, No 4, Aug. 1989, pp. 3248.

2. O.F. Haberl and T. Kropf, “A Chip Solution
to Hierarchical and Boundary-Scan Compat-
ible Board Level BIST,” Proc. Second Great
Lakes Symp. VL.S/, IEEE Computer Society
Press, Los Alamitos, Calif., 1992, pp. 16-21.

3. J.K. Ousterhout, “Tel: An Embeddable Com-
mand Language,” Proc. 1990 Winter USENIX
Co&., Usenix Association, Berkeley, Calif.,
1990, pp. 133-146.

4. J. Reilly et al., “Processor Controller for the
IBM 3081,” IBM J. Research and Develop-

ment, Vol. 26, 1982, pp. 22-29.
5. 4.3BSD Unix ProgrammerS Manual Refer-

ence Guide, University of California, Berke
ley, 1986, ndbm(3).

6. G. Booth, Object Oriented Design with Appii-
cations, Benjamin/Cummings, Inc., Red-
wood City, Calif., 1991.

7. B. Stroustrup, The C++ Programming Lun-
guage, Second Edition, Addison-Wesley,
Reading, Mass., 1992.

8. A. Birrell and B. Nelson, “Implementing Re-
mote Procedure Calls,” ACM Trans. Comput-
ersystems, Vol. 2, No. I, Feb. 1984, pp. 3959.

9. L. Zahn et al., Network Computing Architec-

ture, Prentice-Hall, Englewood Cliffs, NJ.,
1990.

10. IEEE Std 1149.1-1990, /EEEStandard TestAc-
cess Port and Boundary-Scan Architecture,
Institute of Electrical and Electronics Engi-
neers, Piscataway, N. J., Feb. 15, 1990.

I I. K.T. Kornegay and R.W. Brodersen, “A Test
Controller Board for TSS,” Proc. First Great
Lakes Symp. VLSI, IEEE CS Press, 1991, pp.
38-42.

12. ASSET Scan-Based Diagnostics User Guide,
Texas Instruments, Inc., Dallas, Tex., 1990.

13. A.J. van de Goor and J.A.M. van Tetering, “A
Low-Cost Tester for Boundary Scan,” Micro-
processors and Microsystems, Vol. 15, No. 2,
Mar. 1991, pp. 82-89.

14. B.I. Dervisoglu and M. Keil, “ATLAS/ELA:
Scan-Based Software Tools for Reducing Sys-
tem Debug Time in a State-of-the-Art Work-
station,” Proc. 26th ACM/IEEE Design
Automation Co&, Association for Comput-
ing Machinery, New York, 1989, pp. 718721.

the Hewlett-Packard Distributed Object Comput-
ing Program. His work on RISE++ took place
while he was a member of the Testability and Di-
agnostics Group. He has also worked as a test
engineer in the Advanced Development Group at
Texas Instruments, Houston, Texas. His technical
interests include the C-H programming language,
object-oriented programming, distributed com-
puting, and compilers. Vinoski holds a BSEE de
gree from Christian Brothers University,
Memphis, Tennessee. He is a member of the IEEE
Computer Society, the Association for Comput-
ing Machinery, and the Tau Beta Pi National
Engineering Honor Society.

Address questions and comments about this
article to the author at MS CHR-O3-DW, Hewlett-
Packard Company, 300 Apollo Drive, Chelms-
ford, MA 01824; vinoski@apollo.hp.com.

IEEE DESIDN & TEST OF COMPUTERS

