
Toward Integration

82 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

A Smooth Concurrency
Revolution with Free Objects

C hip manufacturers are currently talking
about potentially doubling efficiency on a
2x core, quadrupling on a 4x core, and so

forth. Some programs even run 18 times faster on
a 32-core machine. In the past, it was typical to
talk about improvements of 5 to 10 percent —
rather than 400 to 1,800 percent — by paralleliz-
ing parts of an application. For a change, this is a
change. Yet, multicore is useless without concur-
rent programming. A single-threaded application
can exploit at most 1 percent of the potential
throughput of a 100-core chip, so the reigning
software development advice that “processors just
keep getting faster, and we can get the benefit
without doing anything” is over. Multicore chip
manufacturers are calling for a new software rev-
olution: the concurrency revolution. At first
glance, this might seem surprising, for concurren-
cy is almost as old as computing, and many con-
current programming models and languages have
been invented over the years. In fact, this revolu-
tion is about more than concurrency alone, but
rather concurrency for the masses.

Most of the many concurrent programming
models that have been invented were devised by
concurrency “aristocrats” for concurrency aristo-
crats. These aristocrats were born and raised in a
world of threads, wait-free computing, active
objects, and actor models. They still leverage their
educations to make their living and have the lux-
ury of devoting their entire lives to improving spe-
cific concurrency constructs or algorithms. But not
everyone is so lucky. To get concurrency to the
masses, we need a simple way to exploit paral-
lelism with languages that common developers are
already used to. In particular, many developers
have adopted object-oriented (OO) development
over the past 15 to 20 years, so asking them to
completely revise their educations to become com-
fortable with concurrency would be problematic.

It might instead be more pragmatic to explore
ways to implicitly extract parallelism from current
OO programs by overloading OO constructs. I will
illustrate this idea here by briefly describing one
such way.

In short, I propose viewing a program as a
collection of “free” objects, each of which has its
own thread of control and executes its operations
within atomic transactions. Such objects would
communicate by asynchronous message passing
with futures — objects that encapsulate the results
of server invocations and let clients retrieve them
while hiding the actual state of readiness from the
client. Except for the unleashing of newly creat-
ed free objects, there’s no need for specific lan-
guage constructs other than those already
available in OO languages. After all, C++ has
been successful in part because it looked like C,
Java has been successful in part because it looked
like C++, and C# looks like both. With free
objects, the program looks exactly like a tradi-
tional OO program, with one exception: certain
object creations fork new activity threads and
must be distinguished as such. This column dis-
cusses how to do that.

The Exciting Life of a
Concurrency Aristocrat
Edsger Dijkstra, C.A.R. Hoare, and other famous
computer scientists who shaped the field devoted
much of their time to studying concurrency. Since
then, many researchers, including myself, have
made a living from devising programming models
and algorithms for concurrent computing. Perhaps
because such models and algorithms had to be
published and made good cases for PhDs and fac-
ulty positions, they were (and needed to be) com-
plicated. Yet, it’s hard to imagine using any of
these concurrency models for general purpose pro-
gramming, at least not now.

Rachid Guerraoui • Ecole Polytechnique Fédérale de Lausanne, Switzerland

Editor : Steve Vinoski • v inosk i@ieee .org

We can very roughly classify the
models that researchers have studied as

• threads and locks,
• nonblocking data structures,
• transactions,
• actors, and
• active objects.

As I’ll discuss, these models are pow-
erful but hard to use.

Threads and Locks
With this model, programs are struc-
tured as sets of threads that concur-
rently access shared data structures
protected by locks. Threads are
mapped to processors according to
some strategy that typically depends
on the actual operating system and
hardware architecture. Although this
is probably the most popular model
for concurrent programming, it’s still
restricted to specific programs and
raises several tricky questions, includ-
ing exactly when to fork a thread,
how to decompose a program into
concurrent threads, and when to
acquire locks. Coarse-grained locking
leads to inefficient solutions, where-
as fine-grained locking leads to error-
prone programs. Moreover, locks
aren’t robust: a thread that’s swapped
out while holding a lock prevents all
other threads contending for the same
data structure from making any
progress. Doug Lea’s excellent book,
Concurrent Programming in Java
(Addison-Wesley, 1996), provides
good hints on how to handle this
issue, but determining good locking
strategies remains challenging.

Nonblocking Data Structures
In this model, programs are structured
as sets of threads that synchronize
their activities using nonblocking
data structures. This characteristic cir-
cumvents locking’s robustness issue.
The magic lies in making use of (or
rather, assuming) low-level atomic
objects, such as registers and com-

pare&swap operations, typically pro-
vided in hardware. Devising non-
blocking data structures is nontrivial;
indeed, efficient implementations of
such structures are publishable as
results in conferences such as ACM’s
Conference on Principles of Distrib-
uted Computing (PODC) and the Inter-
national Symposium on Distributed
Computing (DISC). Whereas it’s rea-
sonable to assume that expert pro-
grammers can devise and use libraries
of nonblocking data structures —
Maurice Herlihy and Nir Shavit’s
soon-to-be-published The Art of

Multiprocessor Programming will cer-
tainly help — it’s unrealistic to ask
common developers to turn all their
potentially shared classes into non-
blocking ones.

Transactions
Transactions have been around for
some time, and not just in databases
— Barbara Liskov incorporated them
in her Argus language two decades
ago, for example. Yet, transactions are
generating a lot of interest today
because they address some of the
problems I’ve mentioned. In fact, one
way to view a transaction is as a sim-
ple way to make a block of code
atomic and nonblocking. Basically, a
transaction is a logical unit of compu-
tation that can be safely aborted.
Hence, we can implement transactions
without underlying locks, simply
aborting and retrying them in case
strong suspicions indicate that a dead-
lock has occurred or a thread partici-
pating in the transaction has been

swapped out. Given that this can lead
to live-locks, in which transactions
mutually abort each other, interesting
ongoing research is exploring how to
devise contention managers that can
adopt strategies to retry aborted trans-
actions at the right time or with the
right priorities, based on the transac-
tion’s age or how many objects it has
actually accessed — a transaction that
started earlier or accessed a larger
number of objects should have a high-
er priority. Transaction models, how-
ever, leave open the questions of how
to decompose an application into a set

of threads and how to demarcate
transaction boundaries.

Actors
Following an anthropomorphic direc-
tion initiated by Gul Agha and Carl
Hewitt more than two decades ago,
developers using this approach build
concurrent programs as sets of commu-
nicating actors. This activity doesn’t
include explicit thread forking;
instead, each actor implicitly has its
own thread and communicates asyn-
chronously with other actors by
exchanging messages. When it re-
ceives a message, an actor executes
some behavior, possibly sends a mes-
sage to another actor, and then
becomes a new actor. Making the last
operation the unique point of state
change significantly simplifies con-
currency control within an actor: the
actor is, in this sense, stateless. How-
ever, programming an application in
terms of asynchronous messaging
and stateless objects isn’t trivial — at

JULY • AUGUST 2007 83

A Smooth Concurrency Revolution

One way to view a transaction is as a simple
way to make a block of code atomic and
nonblocking. A transaction is a logical unit
of computation that can be safely aborted.

84 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

least, the gap between this model and
a typical OO program isn’t clear. How
do you transform a program made of
stateful sequential objects interacting
in a synchronous manner into a sys-
tem of asynchronously communicat-
ing stateless actors? How do you
group several actors inside the same
logical entity without systematically
creating bigger actors to encompass
the entire computation — for exam-
ple, programming an atomic trans-
action that withdraws and then
deposits money inside two different

actors? There are no simple answers
to these questions.

Active Objects
Unlike an actor, an active object is
typically stateful. I say “typically”
because there have been almost as
many active object models as papers
on the subject — and there were
indeed many papers on this topic 10
years ago at the ACM Conference on
Object-Oriented Programming Sys-
tems, Languages and Applications
(OOPSLA) and the European Confer-
ence on Object-Oriented Program-
ming (ECOOP). Moving from a
sequential OO program to a program
of (stateful) active objects is quite
natural with few exceptions. Because
the active object is stateful, having it
explicitly control its concurrency to
avoid hampering encapsulation is
tempting. For instance, we might
want to enrich an object’s interface
to express patterns such as “certain
operations cannot execute concur-
rently” or “some operation cannot

execute in a certain state.” We might
also express the fact that a get oper-
ation can’t be executed on an empty
buffer. As Satoshi Matsuoka and Aki-
nori Yonezawa pointed out,1 this
poses further problems when extend-
ing interfaces. For example, to add a
gget operation (say, through inheri-
tance) that can be executed only after
exactly one get, we must modify the
original get to recall exactly when it
was executed. On the other hand,
although an object operation’s atom-
icity seems easy to ensure if the oper-

ation is purely local, the situation is
more complicated if the operation
involves several other active objects.

A Smooth Revolution
with Free Objects
To smoothly integrate concurrency
within an object model, I propose uni-
fying the concepts of object, thread,
and transaction in what I call here a
free object. To explain how such a
model would look, let’s consider how
to address two questions.

Which Objects Are Free?
We could imagine three different ways
to distinguish between objects that are
free and those that are not:

• All objects of certain classes or
types are free. The programmer
would have to highlight which
classes/types of objects are free —
say, by making them inherit from
some specific ancestor class/type.

• The creator of the object decides
whether the latter is free. The creator

can decide whether to “unleash” the
new object using a specific new con-
struct, say fnew, provided as a prim-
itive of the language.

• In an ideal world, the newly creat-
ed object would decide whether it
was free or not. We could use spe-
cific constructors to achieve this.

To understand the free object model,
another question is in order.

What Does a Free Object
Do with Its Freedom?
When a free object is instantiated, the
runtime system automatically creates
a new thread and a new transaction,
both of which are associated with the
object. The transaction terminates
when the object constructor termi-
nates. The thread can then serve
incoming requests, if any. These
requests are executed in the context of
other transactions.

An embarrassingly trivial parallel
program would simply consist of a set
of free objects that didn’t communi-
cate. Things would get slightly more
complicated if they needed to syn-
chronize, so my proposal is to have
such objects interact (and hence syn-
chronize) via message passing, as in
any OO language. The major twist is
to overload the message-passing
semantics using atomicity, asyn-
chrony, and futures. (This is similar to
the idea underlying the Argus lan-
guage, except that the latter had
atomic synchronous invocations. I
later extended that concept in the
ACS (Apply, Call, Send) system to
account for asynchrony; my propos-
al for interacting free objects is along
those lines.2)

Every invocation creates two
concurrent subtransactions of the
transaction running on the client
object. The first subtransaction exe-
cutes the invoked operation while the
second continues the computation at
the client. Unless a reply is expected
from the invoked operation, the two

To smoothly integrate concurrency within
an object model, I propose unifying the
concepts of object, thread, and transaction
in what I call here a free object.

subtransactions execute concurrent-
ly and each terminates at the end of
its operation. If a reply is expected,
the run-time system uses a future
object to keep the invocation trans-
parent. The synchronization between
the client and the server occurs
exactly when the value of the reply
is retrieved — right before accessing
this value.

Disclaimer: I didn’t include code
examples because the point isn’t to
introduce new language constructs.
Indeed, we could apply the idea of free
objects to any OO language as is.
Behind the scenes, of course, the lan-
guage implementer should provide a
transactional system and an asynchro-
nous messaging system, which de-
velopers have worked hard at
implementing in popular OO languages.

V ery roughly speaking, we can view
the model I propose here as the

result of the following straightforward
unification as a key to leveraging the
increasing parallelism provided by the
hardware:

data + functions + thread +
transaction = free object

Unifying data and function was the
key principle underlying abstract data
types and object-oriented languages.
Further encompassing threads led to
active objects and actor models. As
discussed earlier, such models are
appealing for their anthropomor-
phism but leave the synchronization
problem to the developer. Encompass-
ing transactions provides the devel-
oper with a simple solution to that.
After all, Simula, the first OO lan-
guage, had implicit concurrency as a
first-class citizen.

Of course, it doesn’t take long to
figure out examples in which such
unification would be restrictive. The
compiler could help to figure out
which operations don’t really need to

remain within the same transaction
and which objects should actually be
free. We could even imagine linguistic
constructs that would let a concurren-
cy aristocrat fork several threads with-
in a single free object or break
transactions into pieces.

But the bottom-line question is
really whether to propose to the
programmer a simple unified default
model, with the ability for concur-
rency aristocrats to use advanced
constructs to enhance performance,
or a rich model enabling a priori all
kinds of concurrency schemes.
Trying to address this question might
not be very productive, but ex-
ploring models in both directions
seems interesting.

Acknowledgments
Anne-Marie Kermarrec (IRISA), Michal Kapal-

ka (EPFL), and Steve Vinoski were kind enough

to provide useful comments in a very (very)

short period of time.

References

1. S. Matsuoka and A. Yonezawa, “Analysis of

Inheritance Anomaly in Object-Oriented

Concurrent Programming Languages,”

Research Directions in Concurrent Object-

Oriented Programming, MIT Press, 1993, pp.

107–150.

2. R. Guerraoui et al., "Nesting Actions through

Asynchronous Message Passing: The ACS

Protocol," Proc. European Conf. Object-Ori-

ented Programming (ECOOP 92), LNCS 615,

Springer, 1992, pp. 170–184.

Rachid Guerraoui is a professor of computer sci-

ence at Ecole Polytechnique Fédérale de

Lausanne, Switzerland. His research inter-

ests include distributed algorithms and pro-

gramming languages. Guerraoui has a PhD

in computer science from the University of

Orsay and has been affiliated with HP Labs

and MIT. He is coauthor of Introduction to

Reliable Distributed Programming (Springer-

Verlag, 2006). Contact him at rachid.

guerraoui@epfl.ch.

JULY • AUGUST 2007 85

A Smooth Concurrency Revolution

Su
bs

cr
ib

e N
ow

!

F E A T U R I N G

V I S I T
www.computer.org/

pervasive/subscribe.htm

I N 2 0 0 7
• Healthcare

• Building a Sensor-
Rich World

• Urban Computing

• Security & Privacy

del ivers the la tes t deve lop-

ments in pervas ive , mobi le ,

and ubiqui tous comput ing.

With content that ’s access -

ib le and usefu l today, the

quarter ly publ icat ion acts

as a cata lys t for rea l i z ing

the v i s ion of pervas ive (or

ubiquitous) computing Mark

Weiser descr ibed more than

a decade ago—the creat ion

of env i ronments saturated

with comput ing and wire-

l e s s commun ica t ion ye t

gracefu l ly integrated wi th

human users .

IEEE Pervasive
Computing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

