
Toward Integration

Web Services Notifications

Steve Vinoski • IONA Technologies

It’s an asynchronous push-style world out there.
We communicate via email, instant messages,
pagers, faxes, and voice mail, pushing messages

to each other without waiting for immediate
responses. This style of communication lets us pri-
oritize, save, or ignore incoming messages, delay-
ing responses until necessary or appropriate. If
sequentially issuing and handling synchronous
requests and responses were our only mode of
interpersonal and inter-application communica-
tion, our business and social networks would oper-
ate at considerably lower efficiencies.

Asynchronous push is also common in distrib-
uted computing systems. For example,
publish–subscribe (pub–sub) systems let applica-
tions communicate through pushed messages. Pub-
lishing applications push messages into the system,
and from there they’re pushed out to subscribed
applications. Pub–sub systems support a variety of
subscription approaches, such as “send me all mes-
sages sent to this communication channel” or “send
me only those messages containing field X with
value Y.” For example, a system-monitoring appli-
cation might post all error, warning, and informa-
tional messages it receives from a set of distributed
applications. Other applications interested in see-
ing the messages, such as those running on system-
operator desktops, subscribe to those messages —
usually with the ability to filter them according to
type and content. (Most pub–sub systems also pro-
vide for polling, or pull-style, subscriptions, but
designers usually eschew this scheme in favor of
the push approach because polling is much less
efficient.) Pub–sub systems also support different
qualities of service, typically revolving around the
lifetimes of messages and whether they are stored
persistently for later retrieval by intermittently con-
nected consumers.

As Web services have matured, they’ve also
acquired the need for asynchronous push capabil-

ities. Early Web services, such as those for getting
traffic or weather reports or for performing cur-
rency exchange-rate calculations, were seemingly
all remote procedure calls-oriented. In an RPC sys-
tem, the receiver typically performs the requested
service and sends a response back to the caller
over the same connection on which the request
arrived, which means the details required by the
service for sending a reply are implicit in the RPC
network connection. Unfortunately, these kinds of
implied communication details are wholly inade-
quate for asynchronous push Web services.

Service References
First, consider a simple case: the callback. Let’s say
you have a Web services implementation connect-
ed to a stock-market feed, and you have a desktop
application that wants to register itself with the
service to receive a callback whenever a given
stock crosses a certain price threshold. To receive
such a callback, the desktop application also must
be a Web service, and it must inform the stock ser-
vice of its callback endpoint. In other words, it
must send the stock service some kind of network-
communications handle or reference to itself.

However, Web services currently have no stan-
dard concept for such service references. You
might think that the “Web” part of the Web ser-
vices name implies that service references are sim-
ply URLs. For various reasons, this is not the case.

• A URL specifies only a single protocol, but a
service could be reachable via multiple proto-
cols. For example, a service might accept mes-
sages over both HTTP and SMTP, but any URL
for the service can specify only one of those
access methods.

• URLs can’t adequately describe some transport
mechanism types. For example, message
queues typically are defined by a series of para-

86 MARCH • APRIL 2004 Published by the IEEE Computer Society 1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

meters that describe the queue
name, queue manager, get and put
options, message-expiration set-
tings, and message characteristics.
It isn’t practical to describe all of
this information in some form of
message-queue URL.

• URLs do not necessarily convey
interface information. This is espe-
cially true of HTTP URLs, because
Web services generally tunnel
SOAP over HTTP. Given a URL such
as http://computer.org/internet/
SomeService/, you therefore have
no idea whether the resource it rep-
resents is a Web page or a Web ser-
vice. Many Web services develop-
ment kits automatically return the
service’s WSDL definition in
response to an HTTP get on the
service URL. Thus, you can indi-
rectly discover the service’s inter-
face, but that’s only a convention,
not a standard, and it’s not univer-
sally supported.

Several proposals aim to add service
references to Web services and thus fix
these shortcomings. If adopted, these
proposals will eliminate a glaring
inequality currently present in Web
services — namely, they treat a service
reference like a first-class citizen for
invoking that service, but it can’t
appear as a parameter or part of any
messages sent for any service invoca-
tion. Among these proposals are the
WS-Addressing specification,1 and
efforts within the W3C Web Services
Description working group to add ser-
vice references to the Web Services
Description Language (WSDL; www.
w3.org/TR/wsdl).

WS-Addressing
BEA Systems, IBM, and Microsoft
jointly published the proprietary WS-
Addressing specification in March
2003. It defines two transport-neutral
entities: endpoint references and mes-
sage-information headers. Normally,
underlying protocols or transports pro-
vide the information carried by these

types of definitions, but the authors
sought to define constructs that mes-
sages could carry regardless of whether
they were delivered via HTTP, a mes-
sage queue, or some other means.

Endpoint references comprise the
following components:

• a mandatory endpoint address, in
the form of a URI that might be
either a logical or physical address;

• any number of reference properties,
which help identify the resource at
the given endpoint address;

• optionally, the endpoint’s WSDL
port type;

• optionally, the endpoint’s WSDL
service name; and

• any number of policy elements, as
described by the WS-Policy speci-
fication.2 Such policies help de-
scribe the service’s requirements
and capabilities at the given end-
point address.

When an endpoint reference is trans-
mitted as part of a SOAP message, the
message header includes the endpoint
address and any associated reference
properties. We could use bindings
other than SOAP, as long as they were
described in the WSDL service defini-
tion that the endpoint reference refers
to or in the endpoint reference policy
elements. Regardless of whether other
bindings are possible, support for
SOAP bindings is mandatory to help
ensure interoperability.

These elements make up the
message-information header contents:

• a mandatory destination URI, which

identifies the intended message
recipient;

• an optional recipient endpoint ref-
erence;

• an optional message-source end-
point reference;

• an optional endpoint reference,
which provides a destination for
any replies to this message;

• a mandatory action URI, which
indicates this message’s intended
semantics. Specifically, the action
URI lets the message specify the
intended action even when sent to
a catchall service endpoint. For
example, the service URL might

always be http://computer.org/
internet/SomeService/, regardless
of the operation invoked, so the
action URI adds the missing infor-
mation to indicate the actual target
operation. The specification recom-
mends that the action URI should
somehow correspond to the match-
ing WSDL definition for the
intended action;

• an optional message-identifica-
tion URI, which identifies this
message; and

• an optional relationship indicator
for how this message corresponds
to another. For example, if this is
a response to message X, the rela-
tionship indicator will say that it’s
a response and will include the
URI that identifies the original
message X.

As you probably can discern from
these descriptions — together with
endpoint references — a message-
information header’s net effect is to

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2004 87

Web Services Notifications

Several proposals aim to add
service references to Web services
and thus fix these shortcomings.

augment messages with relatively
detailed information about sender,
receiver, intent, and relationship to
other messages. For more details about
endpoint references and message-
information headers, including exam-
ples, please refer directly to the WS-
Addressing specification.

Unfortunately, despite their utility,
WS-Addressing endpoint references
have several drawbacks. First, they rely
heavily on URIs for addressing, which
are ill suited for describing certain types
of endpoints, such as message queues.
Second, they assume that message
recipients will have a priori knowledge
of the WSDL definitions that correspond
to an endpoint reference, especially
when that reference includes the
optional port-type and service-name
elements. Finally, the specification is
unclear whether it supports using end-
point references within WSDL defini-
tions. For example, does it support the
use of an endpoint reference as part of a
parameter type for a remote operation?
The specification states, “Endpoint ref-
erences logically extend the WSDL
description model (for example, port
types, bindings, and so on), but do not
replace it.” Other than this statement,
WSDL gets little mention.

The specification contains no
description or examples of how to use
endpoint references in WSDL. Instead, it
focuses mainly on using them in mes-
sage headers, implying no support for
specifying endpoint references as parts
of the WSDL messages that make up a
service’s WSDL interface. Other specifi-
cations that build on WS-Addressing,
such as WS-Eventing,3 indirectly answer
this question in that they do use end-
point references in their WSDL defini-
tions. It would be best, however, if the
WS-Addressing specification itself were
clear on this point.

WSDL 2.0
As part of WSDL 2.0’s design (the next
major version of WSDL is slated for
publication in April 2004), the W3C
Web Services Description working

group has discussed adding service ref-
erences. As of this writing, proposals
are in the works for making service
definitions accessible as service refer-
ences within WSDL type definitions.4

WSDL supports the notion of a ser-
vice, which ties together Web services’
abstract and concrete elements by
combining what a service is with how
you get to it. Specifically, a WSDL ser-
vice unites an abstract interface (for-
merly called a port type in WSDL 1.x),
which defines the messages that can be
exchanged with the service, with bind-
ings, which define what mechanisms
and data formats are used to commu-
nicate with the service. The most com-
monly used Web services binding is, of
course, SOAP over HTTP.

In WSDL 1.x, service definitions
were not visible to other portions of
the WSDL definition. In particular, ser-
vice definitions couldn’t be referenced
within the types element or message
elements; sending a service reference
as part of a message was not possible.
In WSDL 2.0, it is likely that service
and other top-level WSDL definitions
will become visible to each other, thus
letting service references appear in
types and messages.

Still, WSDL 2.0 service references
have a couple of potential problems.
First, it’s not clear whether WSDL 2.0
service references will support any-
thing like WS-Addressing reference
properties, which are generally useful
for callback and pub–sub situations.
In fact, it’s not clear if there are any
plans for WS-Addressing to become
part of WSDL 2.0. Second, as with
WS-Addressing endpoint references,
any receiver looking to use a WSDL
2.0 service reference must have a pri-
ori knowledge of the service’s WSDL
definition. This disallows applications
that can discover and use services at
runtime, such as GUI builders for Web
services.5 Using a service without
prior knowledge of its WSDL defini-
tion requires the ability to find that
definition and to figure out which
service and interface port from that

definition to use to contact it. Armed
with this information, an application
can download any unknown service’s
WSDL definition and use it to proper-
ly interact with the service. These
three pieces of information enable
dynamic applications (those without
a priori service knowledge) without
penalizing static applications (those
with prior knowledge of the service).
A static application simply looks up
the interface and port in the WSDL
definition it already has for the ser-
vice, gets the service address, and
then proceeds with interactions. In
fact, at IONA, we have already imple-
mented this approach in our Artix
product (see www.iona.com/products/
artix/, and see http://schemas.iona.
com/references/references.xsd for the
definition of Artix service references).

WS-Events
The service-references types just dis-
cussed let a Web service pass a refer-
ence to itself to another Web service so
the latter eventually can call the for-
mer. This callback capability lets one
service asynchronously push events or
notifications to another. Standardized
Web services references will provide
the building blocks for standardized
Web services notification systems.

In July 2003, Hewlett-Packard pub-
lished version 2.0 of its proprietary
WS-Events specification.6 Unlike WS-
Addressing, WS-Events specifically
mandates the use of WSDL to describe
Web services. It supports notifications
between Web services applications in
both an asynchronous push style and
a synchronous pull style.

To subscribe to an event, a con-
sumer must know the details about the
event data it will be receiving. The
WS-Events DiscoveryInterface pro-
vides several operations for discover-
ing what event types a particular pro-
ducer exposes. The GetAllEventTypes
operation lets a consumer obtain a list
of all event types to which it can sub-
scribe. At the next level of detail, the
GetEventTypeDefinition operation

88 MARCH • APRIL 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

takes an event types list and returns a
list of XML event type definitions that
describe details of each. Finally, the
GetEventInstanceInfo operation
also takes an event types list, but
rather than describing them, it returns
details about any actual instances of
those types that the producer still
holds. This operation lets new sub-
scribers synchronously request copies
of any existing events.

An event type definition includes
the following information:

• a URI representing the event type;
• a URI pointing to the schema defin-

ing the event type, allowing con-
sumers to validate incoming events
of this type;

• a subscription URL pointing to the
WSDL definition of the subscription
interface for this event type; and

• a subscription mode indicator that
tells how the events are delivered.
This indicates whether the event is
asynchronously pushed by the
producer, synchronously pulled by
the consumer, or can operate in
either mode.

To subscribe, a consumer passes the
following information to the produc-
er’s Subscribe operation:

• a selector for the event type or
types to which it wants to sub-
scribe. This can be one or more
event URIs, a regular expression
matching the desired event types,
or the keyword all to match all
available events;

• a subscription timeout, indicating
a time that the producer should
release the subscription, or the key-
word infinite, indicating that the
subscription should never time out;

• an optional filter that prevents the
producer from sending undesired
event data to the consumer (unfortu-
nately, the specification does not pro-
vide any meaningful details regard-
ing filtering); and

• a callback URL, which, if provided,

indicates where the producer should
push events to. If the URL is not pro-
vided, the consumer will pull events
from the producer instead.

The result of a successful subscription
request is an opaque string that identi-
fies the subscription. Later, the consumer
can use this subscription ID to extend or
cancel the subscription.

As specifications go, WS-Events has
some nice features, but overall it could
be improved. In one nice feature, the
specification addresses the important
issue of subscription cleanup through its
automatic subscription-expiration fea-
ture. In production systems, one of the
biggest problems with notification ser-
vices is that administrators often take
applications serving as event consumers

offline or entirely decommission them
without properly disconnecting them
from event producers, and the stale sub-
scriptions can have negative effects on
producer performance and scalability.

On the negative side, the specifica-
tion completely misses filtering. As
with subscription management, filter-
ing is a very important issue for noti-
fication systems. When properly
applied, filters can help reduce
machine and network resource con-
sumption in the overall notification
process by keeping the producer from
delivering event data that will only be
thrown away, and by keeping con-
sumers from processing unwanted
events. Another problem is that the
specification also allows consumers to
synchronously pull events, which

implies that producers must have the
capacity to buffer events for some
time. Such buffering can be difficult to
implement and can have adverse
effects on producer scalability. Final-
ly, perhaps the worst WS-Events spec-
ification element is that it identifies
consumer endpoints via URLs rather
than service references, which has all
the drawbacks I explained earlier.

WS-Eventing
The WS-Eventing specification, a pro-
prietary specification written by BEA
Systems, Microsoft, and Tibco Soft-
ware, also supports the asynchronous
push use case. It’s similar in content
and approach to HP’s WS-Events spec-
ification, but simpler. Specifically, it
lets a Web service (called an event sink)

register with or subscribe to another (an
event source) so that the event sink can
receive notification messages from the
event source. To provide this capabili-
ty, WS-Eventing builds on the endpoint
reference and message-information
header capabilities provided by the
WS-Addressing specification.

To subscribe to an event source, an
application sends a subscription mes-
sage that sets the message header’s
action URI to a special value to indi-
cate a subscription action that con-
forms to WS-Eventing semantics:

http://schemas.xmlsoap.org/ws/2004/
01/eventing/Subscribe

In the message body, the application
sends a URI for the intended event

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2004 89

Web Services Notifications

Standardized Web services
references will provide the building
blocks for standardized Web
services notification systems.

sink, along with optional reference
properties, such as a subscription iden-
tifier, to be sent with each notification.
The message body also can include an
event filter specification — a Boolean
expression that, by default, is an XML
XPath7 expression.

In response to the subscription
request, the event source returns a
message with its action URI set to the
following special value:

http://schemas.xmlsoap.org/ws/2004/
01/eventing/SubscribeResponse

Its message body contains a subscrip-
tion identifier and a subscription
expiry time.

When the event source has an event
to send to a particular sink, it checks
the event against any filters that the
sink established as part of its subscrip-
tion. If the filter evaluates to true, the
source sends the event to the sink.

Eventually, a sink’s subscription
will expire, indicated by the expiry
time included in the original subscrip-
tion reply. A sink can renew its sub-
scription before it expires by sending
the source a renewal message that
includes the subscription identifier and
a time or duration by which to extend
the subscription.

Overall, the WS-Eventing design is
simple yet elegant. Unlike the HP
specification, it includes a well-
designed filtering capability, and
avoids the synchronous-pull event-
delivery model.

Nevertheless, WS-Eventing could
be better in several ways. First, if it
were based on WSDL service refer-
ences rather than WS-Addressing, it
would be much cleaner, more elegant,
and more easily applicable to bindings
other than just SOAP over HTTP. Sec-
ond, WS-Eventing has no event meta-
data discovery capabilities, as in HP’s
WS-Events specification. Third, and
perhaps most important, the intellec-
tual property rights and royalty issues
associated with WS-Eventing, WS-
Addressing, and other associated pro-
prietary specifications are far from
clear. Some complain about the rela-
tively slow pace of standards develop-
ment, but proprietary standards such
as these serve only to slow technical
advances in the Web services market,
not speed them up.

Need to Standardize
Web services could clearly benefit from
standardizing infrastructure features
such as service references, routing,
policies, and notifications. Conver-
gence on these fundamental specifica-
tions is crucial. Opening the develop-
ment and evolution of specifications
like the ones I described here to a
broader set of participants, while leav-
ing the legal complications out, would
help advance Web-services technolo-
gies to a level suitable for enterprise-
quality systems. Open source has
shown benefits for applications, mid-
dleware, and operating systems — per-

haps we should apply the same princi-
ples and create open-source Web ser-
vices specifications?

Acknowledgments
Many thanks to IONA colleagues Des Carbery

and Adi Sakala for their assistance in exploring

the service reference design space, and for

reviewing a draft of this column.

References

1. A. Bosworth, et al., “Web Services Address-

ing (WS-Addressing),” joint specification by

BEA Systems, IBM, and Microsoft, Mar.

2003; www-106.ibm.com/developerworks/

Webservices/library/ws-add/.

2. D. Box, et al., “Web Services Policy Frame-

work (WS-Policy),” joint specification by

BEA Systems, IBM, and Microsoft, May

2003; www-106.ibm.com/developerworks/

library/ws-polfram/.

3. L.F. Cabrera, et al., “Web Services Eventing

(WS-Eventing),” joint specification by Mi-

crosoft, BEA Systems, and Tibco, Jan. 2004;

http://msdn.microsoft.com/library/default.

asp?url=/library/en-us/dnglobspec/html/

WS-Eventing.asp.

4. R. Chinnici, “Counterproposal for Service

References in WSDL 2.0,” submission to the

W3C Web Services Description working

group, Oct. 2003; http://lists.w3.org/

Archives/Public/www-ws-desc/2003Oct/

att-0345/counterproposal.html.

5. M. Kassoff, D. Kato, and W. Mohsin, “Creat-

ing GUIs for Web Services,” IEEE Internet

Computing, vol. 7, no. 5, 2003, pp. 66–73.

6. N. Catania, et al., “Web Services Events (WS-

Events), version 2.0,” Hewlett-Packard spec-

ification, July 2003; http://devresource.hp.

com/drc/specifications/wsmf/WS-Events.pdf.

7. J. Clark and S. DeRose, “XML Path Lan-

guage (XPath), version 1.0,” W3C recom-

mendation, Nov. 1999; www.w3.org/TR/

1999/REC-xpath-19991116.html.

Steve Vinoski is chief engineer of product inno-

vation for IONA Technologies. He’s been

involved in middleware for 15 years. Vinos-

ki is the coauthor of Advanced Corba Pro-

gramming with C++ (Addison Wesley Long-

man, 1999) and has helped develop

middleware standards for the OMG and

W3C. Contact him at vinoski@ieee.org.

90 MARCH • APRIL 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

Computing in Science
& Engineering

Computing in Science & Engineering
presents scientific and computational
contributions in a clear and accessible format.

www.computer.org/cise/

May/June:
Verification and Validation
It's easy to forget that numerical models do
not necessarily faithfully simulate nature.
Verification of the models is essential to
ensure that they are implemented without
major errors; validation ensures that the
models accurately capture the dominate
effects determining the
behavior of the system
being modeled. This
issue discusses the
need for V&V and
gives examples of
it for several
different types of
simulations.

