
IEEE INTERNET COMPUTING 1089-7801/02/$17.00 ©2002 IEEE http://computer.org/internet/ MAY • JUNE 2002 89

Toward Integration

Web Services
Interaction Models
Part 1: Current Practice

Each middleware approach has one or more
interaction models associated with it that
determine how applications built on top of

the middleware interact with each other. Message-
oriented middleware (MOM) applications interact
rather simply, for example, by posting messages to
and retrieving messages from queues. Object-ori-
ented middleware applications such as those based
on Corba or Enterprise Java Beans (EJB) interact by
invoking methods on distributed objects. Because
interaction models significantly influence the types
of abstractions a middleware system makes avail-
able to applications, they figure prominently in
determining the breadth and variety of application
integration that the middleware supports.

As Web services evolve, they too will acquire
standard interaction models; otherwise, their use
will be limited to small-scale proprietary systems,
rather than providing the standards-based “mid-
dleware for middleware” for uniting disparate
islands of integration, as I outlined in my previous
column.1 At this point, however, the industry and
standards bodies have yet to reach consensus on
Web services interaction models. In this column, I
explore some of the problems associated with a
popular current approach to Web services interac-
tion models.

Service-Oriented Architectures
Today, most Web services middleware is designed
to let you wrap existing business logic and make
it accessible as a Web service. Because they typi-
cally target systems implemented in Java classes,
Java beans, or Corba objects, Web services toolkits
help developers convert existing Java or Corba
interface definitions into definitions written in the
XML-based Web Services Description Language
(WSDL),2 a de facto standard the World Wide Web

Consortium (W3C) is currently considering for
standardization. These toolkits also provide com-
ponents that enable distributed access to a Web
service at runtime via SOAP, which is currently
nearing completion as a W3C standard.3 (Though
the acronym originally stood for “simple object
access protocol,” the W3C decided in 2001 to just
stick with “SOAP,” which was a good move given
that the protocol is neither simple nor object-ori-
ented.) Some toolkits also supply an implementa-
tion of a Web services directory or registry service,
typically based on Universal Description, Discov-
ery, and Integration (UDDI, www.uddi.org), that
enable Web services to register themselves so
enable applications can find their WSDL defini-
tions and interact with them.

In terms of interaction models, today’s Web ser-
vices middleware generally supports service-ori-
ented architectures like the one in Figure 1 (next
page). While much has been made of them, the
concept is actually quite trivial: A service with a
well-defined interface and data interchange char-
acteristics advertises itself in a distributed directo-
ry service where applications can look to find the
details for interacting with the service. 

Service-oriented architectures are defined, in
part, by a three-step interaction model, but that
is only part of the story. Middleware systems such
as Corba, EJB, the component object model
(COM), distributed computing environment (DCE),
and Web services each support their own specif-
ic interaction steps within the general interaction
model, especially in step 3. For example, session-
oriented object systems typically require the fol-
lowing interactions:4

1. A factory object advertises its object reference
in the directory service.

Steve Vinoski • IONA Technologies • vinoski@ieee.org



90 MAY • JUNE 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

2. The client then must look up the
reference to the factory object in
the directory service. 

3a. The client then asks the factory
object to create a service object
instance. The factory creates the
service object and returns an object
reference for it to the client.

3b. The client directly uses the service
object created by the factory.

3c. The client destroys or releases the
service object when finished with it,
depending on the underlying mid-
dleware’s object-lifetime semantics.

Similarly, a service-oriented architec-
ture based on SOAP, WSDL, and UDDI
requires the following interactions:

� A Web service advertises its WSDL
definition into a UDDI registry.

� The client looks up the service’s
definition in the registry.

� The client uses information from
the WSDL definition to send mes-
sages or requests directly to the
service via SOAP.

Given the similarities between the
interactions required for the Web ser-
vice system and those for the object
system, we might assume that if the
middleware hosting the business logic
supports service-oriented architectures,
wrapping that business logic as a Web
service would be trivial because Web
services also supports service-oriented
architectures. Unfortunately, we can’t
ignore the underlying middleware-

specific interaction models, so it’s not
that simple.

Web Services
Wrapper Interactions
Let’s assume we want to wrap a ses-
sion-oriented object as a Web service.
Using our Web services toolkit, we first
translate the interface specification for
the session object into WSDL, and then
create an entry in the UDDI registry to
advertise the WSDL specification. Web
services clients can then look up the
WSDL in the registry and interact with
the object as a Web service.

This example seems almost too
good to be true, and in fact, it is. It
fails to address several significant
issues, including those involving
object life cycle, object references, and
fault handling.

Object Life Cycle
We implemented the Web service
using a session-oriented object from
an underlying middleware system. In
the object system, a client application
first interacts with the factory object
to create the session object, which
the client must later release or
destroy. The objects’ life cycles are
controlled explicitly through client
interactions, but we have not
accounted for handling them in the
Web services system. 

One way to address this problem
might be to expose the factory object
as a Web service. The Web services
system’s interaction model would

then precisely parallel that of the
underlying object system, which
should let Web service clients control
life cycle issues exactly like their
object system counterparts.

Unfortunately, exposing the facto-
ry object as a Web service means that
every object in the underlying object
system must be exposed just to make
the Web services system work. Not
only does the Web services interaction
model parallel that of the underlying
system, but the design and topology of
the Web services system also precise-
ly parallels the underlying system. In
other words, there is a one-to-one cor-
respondence between Web services
and the underlying objects.

Also, exposing all the underlying
objects as Web services makes it diffi-
cult to hide the details of the objects’
communication protocols from the
Web service clients. In a Corba system,
for example, invoking a request on an
object using the standard Internet
inter-ORB protocol (IIOP) might result
in a location forward result — meaning
that the target object for the request
actually resides at a different location
— that returns the object’s actual loca-
tion. The object request broker (ORB)
middleware under the client applica-
tion normally handles location for-
warding transparently, completely
shielding the client application from
the details of the forwarding protocol.
Because we cannot assume that all
clients in a Web services system are
built over an ORB, however, direct
exposure of Corba objects as Web ser-
vices requires intermediaries or gate-
ways to take the place of the ORB for
shielding those clients from protocol
details such as location forwarding.
Intermediaries and gateways are gen-
erally undesirable because of their
potential as performance bottlenecks,
single points of failure, and adminis-
trative burdens.

Object References
Exposing the factory object as a Web
service appears to solve the life cycle
problem, but it introduces another:
When a client invokes the factory in

Figure 1. Service-oriented architecture. Services advertise themselves in the reg-
istry, allowing clients to query the registry for service details and interact with the
service using those details.

Directory service
2. Client looks up
service details
in directory service.

Service client Service

1. Service
advertises
itself in directory
service.

3. Client interacts with service.



IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2002 91

Interaction Models

the object system, the factory returns
a reference for a newly created object.
Representing this interaction at the
Web services level requires the equiva-
lent of a Web services object reference.

Web services do not have object
references, but they do have univer-
sal resource identifiers (URIs). We
could thus represent every object
exposed as a Web service using a URI.
Unfortunately, this means that some-
where — most likely in the intermedi-
aries or gateways mentioned above —
the system must keep track of the
mappings between the Web services’
URIs and their corresponding refer-
ences in the underlying object system.
(Although some object systems sup-
port URI forms for object references,
those URIs still require middleware
specific to the object system to inter-
pret them, and we can’t assume that
all Web services clients will be based
on such middleware.) Creating and
maintaining these mappings can be
difficult and error prone, especially
given that object references can be
embedded deeply into other data
structures. Intermediaries and gate-
ways are therefore required to comb
through all data passed between the
Web services system and the underly-
ing object system to find all URIs and
convert them to object references.

Another issue that URIs do not
resolve with respect to object refer-
ences is that in the session-oriented
object system approach, the objects
typically maintain state on behalf of
the client that creates them. For rea-
sons of scalability, performance, and
correctness, exposing stateful objects
directly as Web services is a question-
able practice. Creating a stateless
object that wraps the entire session-
oriented interaction model and expos-
ing that object as a Web service would
almost certainly be a better approach,
although it would still suffer from
some of the same problems.

Faults and Exceptions
Distributed object systems typically
use exceptions to signal error condi-
tions. A client attempting an operation

on a target object might get an excep-
tion because of an error in business
logic processing or an error in the dis-
tributed system — from a temporary
network breakdown, for example. In
the latter case, exceptions often inform
the client to retry the operation.

Like object references, exceptions
must also be converted as they pass
into the Web services system. Applica-
tion-specific exceptions are usually
easy to convert, but converting excep-
tions that are specific to the underly-
ing object system can be difficult
because they might not make any
sense in the Web services system.

Failure to Abstract
This example shows that what initially
seemed to be a simple exposure of a
distributed object as a Web service
required us to expose the whole dis-
tributed object system as a Web service
system. The resulting interaction mod-
els at the Web services level necessar-
ily became identical to those of the
underlying distributed object system.
Most fundamentally, we failed to prop-
erly abstract the object system when
exposing it as a Web service, instead
letting details of the object system’s
interaction model — implementation
details, in this case — become visible in
the Web services layer.

Unfortunately, this example is not
contrived. Some Web services prod-
ucts on the market today promote
developing Web services systems in
ways that will result in the types of
problems I’ve described here. While
building systems this way is fine for
gaining experience with Web services
technologies, production systems
require different approaches to
achieve the desired degree of integra-
tion, and thus, a reasonable return on
investment. For reasons I’ll cover next
issue, successful Web services inte-
gration systems typically operate at a
level of abstraction that involves
business process flow and business
documents, rather than at the lower
level of function-oriented compo-
nents and type systems related to pro-
gramming languages.

Conclusion
Our initial goal was to expose the ser-
vices of a single object, but by failing
to properly abstract the service offered
by the underlying objects, we ended up
creating a Web services copy of the
underlying session-oriented object sys-
tem. The same types of problems will
arise when attempting to directly
expose Java classes, EJBs, or any
underlying function-oriented middle-
ware as Web services.

Other problems that will arise
include semantic mismatches, data
type mappings between systems, ser-
vice granularity issues, and state
management. Unfortunately, redis-
covering all these problems seems
inevitable whenever a higher-level
approach comes along. When Corba
was first introduced in 1991, for
example, many wanted to know how
to expose their C++ objects as Corba
objects. The answer was simple:
“Don’t do that.” Attempting to mas-
querade software assets from a lower
level of abstraction directly at a high-
er level can often cause significant
mismatch and exposure problems, as I
have described here.

I will continue this discussion next
issue by investigating some promising
alternatives to Web services interaction
models. As always, if you have com-
ments on this or any of my columns,
please e-mail me.

References
1. S. Vinoski, “Where is Middleware?” IEEE

Internet Computing, March/April 2002, vol.
6, no. 2, pp. 83-85.

2. Web Services Description Language (WSDL)
1.1. W3C Note, 15 March 2001; available at
www.w3.org/TR/wsdl.

3. XML Protocol working group homepage,
www.w3.org/2000/xp/Group/

4. M. Henning and S. Vinoski, Advanced Corba
Programming with C++, Addison Wesley
Longman, Reading, Mass., 1999.

Steve Vinoski is vice president of platform tech-

nologies and chief architect for IONA Tech-

nologies. He is coauthor of Advanced

CORBA Programming with C++ (Addison

Wesley Longman, 1999). Vinoski currently

serves as IONA’s representative to the W3C’s

Web Services Architecture working group.


