
Toward Integration

Web Service References

Iwrote about notification-based Web service sys-
tems one year ago (“Web Services Notification,”
Mar./Apr. 2004, pp. 86–90). To properly address

the topic, I devoted a significant portion to Web
service references, which are, conceptually, like net-
work handles that refer to Web services. Service
references are particularly important for notifica-
tion systems, which usually require subscribers to
register service references to receive notification
messages. Given that they appear in one form or
another in almost every distributed system, service
references are nothing new. Nevertheless, no stan-
dardized service reference exists for Web services.

Among other things, the WS-Addressing spec-
ification,1 which entered the W3C (www.w3.org)
standardization process in October 2004, specifies
a construct called an endpoint reference (EPR),
which is much like a service reference. I’m a mem-
ber of the WS-Addressing working group (WG),
and we’ve made good progress toward turning the
specification into a standard — the process might
even be complete by late 2005. In this column, I
discuss a few issues that I raised in the WG regard-
ing the features needed to turn the EPR into a flex-
ible and useful Web service reference.

The Nature of Services
The excessiveness of the media hype surrounding
the service-oriented architecture (SOA) during the
past year or two notwithstanding, several compa-
nies have used it to develop effective enterprise
computing systems that provide measurable
returns on investment. SOA’s recently increased
popularity is due to Web services, but developers
have successfully deployed it for many years using
older technologies such as the Distributed Com-
puting Environment (DCE), messaging systems,
Corba, and Java 2 Enterprise Edition.

In enterprises that have the knowledge and
capabilities to successfully apply service-oriented

approaches, it’s rare to find only homogeneous
SOAP-based Web services. Instead, SOA deploy-
ments typically comprise a variety of implemen-
tation platforms and technologies. Because
successful business computing systems tend to
remain tied to the technologies on which they were
launched (rather than changing every time a new
technology comes along), implementation tech-
nology mixtures are inevitable.

An enterprise’s inherent heterogeneity means
that services often must span multiple technologies.
When services don’t do so seamlessly, the result is
a collection of technology stovepipes, which are
often joined through combinations of cumbersome
gateways or slow, expensive, and proprietary enter-
prise application integration (EAI) systems.

Multitechnology services — those accessed via
multiple protocols, transports, or middleware
systems — avoid technology stovepipes. Thus, ref-
erences for such services must convey all means
of access that a service wishes to make known to
its consumers. Let’s consider typical Internet ser-
vices. As Rich Salz of Datapower Technology
(www.datapower.com) points out, Internet servers
are often implemented as multiport applications in
which each port handles a different protocol.2 In
general, a service might make itself available over
multiple ports to offer different qualities of service
(QoS) to different consumers. For example, it might
accept compressed messages over one port,
encrypted messages over another, and, perhaps,
management messages over a third. Another ser-
vice might accept Corba messages on one port and
SOAP messages on another.

A real-world analog for a multiport service ref-
erence is your business card. Along with your name
and job title, your business card lists various ways
to contact you: phone, fax, and cell phone numbers,
email address, mailing address, homepage, and, per-

96 MARCH • APRIL 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

Steve Vinoski • IONA Technologies

continued on p. 94

94 MARCH • APRIL 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

haps, your instant messenger ID. Some-
one who wants to reach you can choose
any of the methods listed on your card,
and despite the different operational
details and QoS each contact method
offers, all of them lead to the same “ser-
vice”: you.

EPR Shortcomings
As currently defined, the WS-
Addressing EPR allows access to a ser-
vice over only a single port. That’s like
mandating that a business card specify
only one means of reaching a person,
thus forcing you to have multiple busi-
ness cards to allow others to reach you
via multiple access means. Imagine
attending a business meeting where
you had to give business cards to five

people, each of whom you wanted to
be able to reach you via your desk
phone, cell phone, or email. You’d have
to hand out 15 cards to do so.

There are at least four approaches to
dealing with this problem for services.

1. Augment the EPR structure with
additional port information, perhaps
by adding optional fields to the
EPR.

2. Standardize a policy assertion that
could convey additional optional
port information within an EPR.
Sanjiva Weerawarana, research
staff member at IBM T.J. Watson
Research Center, suggested this
approach, based on WS-Policy,3 in
an email to the WS-Addressing WG
in November 2004. This approach
could work in theory, but because
WS-Policy isn’t an actual standard,
the WS-Addressing standard can’t
reference it.

3. Create a separate structure that can
hold one or more EPRs. Someone

could argue that the concept of a
“multiport EPR” is flawed because
endpoint and port are somewhat
synonymous. Creating a separate
multi-EPR structure would leave the
existing EPR as it is and create a
separate composite reference
structure capable of holding one or
more EPRs. A composite reference
would be similar to a Web Services
Description Language (WSDL)4

service element and could be passed
around in messages just like an EPR.

4. Use WS-MetadataExchange (WS-
MEX).5 Here, a consumer would use
a service’s advertised EPR —
containing information for only a
single port — to retrieve the service’s
metadata, which would provide any
additional port information.

Ultimately, it boils down to whether a
service can carry multiple port infor-
mation in its EPR by value, or whether
it must advertise an address that an
application can use to indirectly obtain
information about alternative ports.
WS-MEX promotes the indirect
approach, whereas the by-value
approach is reminiscent of Corba inter-
operable object references (IORs). The
IOR approach, which has been in use
for about a decade, proves the viabili-
ty and usefulness of having a service
reference structure that can carry con-
nectivity details for any number of
protocols and transports.

The WS-MEX approach would
work, but it would require network
operations (which can be fairly expen-
sive) to retrieve additional port infor-
mation, and it would be tough on lega-
cy services, which can’t be rebuilt and
redeployed to support WS-MEX. For
each legacy service, we could intro-
duce a separate WS-MEX service
process, but that would add production

system overhead in the form of extra
hardware provisioning, system man-
agement, and maintenance.

Another shortcoming with the
single-address EPR relates to service
availability. In the current WS-
Addressing specification, EPRs can
hold only a single service address. In
fact, the name EPR implies that it is
just that — a reference to a single end-
point. One question this design evokes
is fairly obvious: how does an applica-
tion access the service when the
address indicated by its EPR fails?

If an application using a failed EPR
originally retrieved it from some lookup
or directory service, the application
could presumably go back, do another
lookup, and get a new or different EPR.
This assumes that the EPR-referenced
service is available at multiple end-
points, the service has advertised mul-
tiple EPRs in the directory service, the
directory service is capable of storing
multiple EPRs under a single service
name or description, and that the direc-
tory service hands out EPRs in a round-
robin, random, or other process that
prevents calling applications from get-
ting the same EPR each time they ask.
Those are a lot of assumptions.

What if the application received
the failing EPR from some other appli-
cation, perhaps as part of some mes-
sage? Unless that message provided
multiple EPRs to try for each service,
the application would be stuck with a
failed EPR, and would be unable to
reach the service.

We might argue that the machinery
for high availability is somewhere in
the Web services stack below the level
of the address contained within an
EPR, such that EPRs need not account
for such failures. For example, we
might use the same approaches that
distribute loads across multiple Web
servers to try to ensure that at least
one service instance is alive and ready
at the endpoint indicated by the EPR.
Indeed, this is one viable approach, but
it shouldn’t be the only implementa-
tion choice the standard imposes.

Another shortcoming with the single-
address EPR relates to service availability.

continued from p. 96

A composite or multiport EPR
could refer to a single logical service
and hold physical addresses for multi-
ple endpoints. Thus, an application
encountering a failure using one phys-
ical address could go back to the same
EPR and try a different address. This
approach would alleviate the need for
other machinery above or below the
EPR level to provide for service avail-
ability, while obviating the current
EPR design shortcomings that force
you to use some other approach to
allow for such availability.

Purity vs. Practicality
Because WS-Addressing is destined to
become a W3C standard, some believe
that it should support only standard
W3C protocols, specifically SOAP. Of
course, WSDL is also a W3C standard.
Unfortunately, not everyone wants to
focus at that level in the Web services
stack. Because of the two camps’ dif-
ferent focuses regarding Web services,
there is a divide between the SOAP and
WSDL supporters.

Web services aren’t as much about
SOAP as they are about messages and
contracts. SOAP is a good way to
encode Web service messages, but it’s
not the last good way we’ll ever see.
WSDL is a very flexible way of describ-
ing and abstracting services that span
multiple message protocols, formats,
and transports because it’s a step
removed from the specifics of those
technologies. WSDL supports SOAP, but
doesn’t require it. It can support a wide
variety of protocols, transports, and
message formats because, unlike the
current version of the EPR, WSDL’s
designers explicitly included extensi-
bility to support multiprotocol services.6

This enables WSDL to support older
protocols and message formats that are
still important in today’s enterprises. As
underlying technologies like SOAP
inevitably come and go, WSDL’s exten-
sibility can accommodate them, and the
end result is a strong and clean separa-
tion between business application logic
and the technologies that implement it.

An older successful service
abstraction language example is the
Corba Interface Definition Language,
which the Object Management Group
(OMG) originally defined in the early
1990s. IDL’s definition came several
years before that of the Internet Inter-
ORB Protocol, which Corba object
request brokers (ORBs) now generally
use to communicate. Before IIOP, IDL
worked with a variety of vendor-spe-
cific proprietary protocols and trans-
fer syntaxes. Interestingly, IDL didn’t
change at all when IIOP came along;
it worked for the then-new IIOP-
accessible systems, and yet continued
to work for all the older vendor-spe-
cific protocols. This let vendors add
support for the IIOP interoperability
standard to their products while main-
taining support for their own proto-
cols, all without requiring their cus-
tomers to make any code changes. If
not for this, Corba would likely have
died in the mid-1990s. Yet, telecom-
munications, manufacturing, finance,
and other industries are still heavily
using it a decade later.

One counter to this argument is
that WSDL is not IDL. Note that in my
earlier statements, I wasn’t talking
about objects versus services, stateful-
ness versus statelessness, or any of the
other positions that typically accom-
pany the WSDL versus IDL debate.
Instead, as with the business-card
analogy, what matters is the service
and its contract, and both WSDL and
IDL support that view. There might be
multiple ways to access a given ser-
vice, and how you access the service
could change over time. What ulti-
mately provides business value is the
service, not the pipes leading to it.

In many ways, it comes down to which
of the two words in the phrase “Web

services” you focus on. SOAP advocates
focus on the Web part, which supports
their general opinion that SOAP and
HTTP are all that matter. We who focus
on WSDL tend to address the services

part, because most Web services work
today occurs not on the Web but in the
enterprise, where a variety of protocols
and message formats are facts of life,
and will continue to be for quite some
time. I know of no compelling reason
that the WS-Addressing EPR, appropri-
ately augmented to allow for multiport
services, couldn’t suffice as a standard
Web service reference and serve both
viewpoints equally well.

Acknowledgments
I thank my IONA colleague Rebecca Bergersen

for her feedback.

References

1. D. Box et al., Web Services Addressing (WS-

Addressing), W3C member submission, Aug.

2004; www.w3.org/submission/2004/subm

-ws-addressing-20040810.

2. R. Salz, “WSDL 2: Just Say No,” XML.com,

Nov. 2004; www.xml.com/pub/a/2004/11/

17/salz.html.

3. S. Bajaj et al., Web Services Policy Frame-

work (WS-Policy), joint specification by

IBM, BEA Systems, Microsoft, SAP, Sonic

Software, and VeriSign, Sept. 2004; www

-106.ibm.com/developerworks/library/

specification/ws-polfram/.

4. Web Services Description Language 2.0,

W3C working draft 3, Aug. 2004; www.w3.

org/tr/wsdl20.

5. K. Ballinger et al., Web Services Metadata

Exchange (WS-MetadataExchange), joint

specification by BEA Systems, Computer

Associates, IBM, Microsoft, SAP AG, Sun

Microsystems, and WebMethods, Sept. 2004;

www-106.ibm.com/developerworks/

library/specification/ws-mex.

6. S. Vinoski, “Integration with Web Services,”

IEEE Internet Computing, vol. 7, no. 6, 2003,

pp. 75–77.

Steve Vinoski is chief engineer of product inno-

vation for IONA Technologies. He’s been

involved in middleware for 17 years. Vinos-

ki is coauthor of Advanced Corba Program-

ming with C++ (Addison Wesley Longman,

1999), and he has helped develop middleware

standards for the Object Management Group

(OMG) and World Wide Web Consortium

(W3C). Contact him at vinoski@ieee.org.

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2005 95

Web Service References

