
Toward Integration

The Performance
Presumption

M iddleware has a variety of qualities,
such as size, cost, complexity, flexibili-
ty, and performance. For each applica-

tion, different qualities are more important than
others. Choosing the right middleware means first
determining the qualities that matter most for
your application, and then evaluating different
types of middleware to see how well they meet
your requirements.

Sounds simple, straightforward, and perhaps
even obvious, right? In reality, however, properly
evaluating middleware in this fashion can be a
nontrivial project that can cost much more time or
money than allotted in your budget. It also can
require skills and experience that nobody on your
staff possesses.

Because of the difficulties involved in thor-
oughly and accurately evaluating middleware,
consumers routinely take shortcuts. Perhaps most
common among these is avoiding the issue alto-
gether through supplier loyalty: they simply buy
or adopt middleware systems based on recom-
mendations from their current middleware suppli-
er. This approach tends to work reasonably well,
because it avoids the switching costs associated
with moving to a new supplier.

Obviously, it requires that you select a supplier
that can supply viable middleware systems that
survive across the life cycles of multiple tech-
nologies, rather than going with a “one-trick
pony” that is tied to a single technology. It also
works only as long as your supplier’s middleware
systems actually fulfill your requirements. Of
course, supplier or brand loyalty is a general mar-
ket phenomenon — one that’s certainly not limit-
ed to middleware.

What Can You Measure?
One popular shortcut for technical middleware
evaluation is to check only those qualities that are
easily measurable. One such quality is perfor-
mance. Consumers simply evaluate middleware

systems by counting the rate at which they can
send requests or messages through a given system,
and they choose the fastest system.

The most common method for measuring such
performance is to write a simple application that
sends several thousand messages of a given size
through the system, measure the time it takes each
message to leave the sender application and arrive
at the receiver application, and average the mea-
sured times. Taking time measurements at the
point of sending or receiving eliminates any
application-specific setup or handling code from
the samples. The measurement thus reflects only
the middleware and everything effectively below
it, including the operating system and the net-
work. For round-trip request–response systems,
the remote application that’s processing the
requests is also included in the measurement, as
well as the time required for marshaling argu-
ments and return values.

Users Overemphasize Performance
Since the mid 90s, my friend and colleague Dou-
glas C. Schmidt has focused significant effort on
researching and analyzing middleware perfor-
mance issues. (You can find his informative papers
on this topic at www.cs.wustl.edu/~schmidt/
research.html.) Doug’s work — no doubt influenced
by others’ earlier work on transaction monitor per-
formance — has had a significant positive effect
on middleware performance implementations.
Some of his initial publications in this area identi-
fied the sources of serious performance bottlenecks
in the Corba systems of the day, for example, while
some of his later research details design patterns
for high-performance middleware systems, espe-
cially for real-time computing.

An interesting side effect to work like Doug’s is
that it has unintentionally led many middleware
users to presume that “high performance” is the
same as “high quality.” I’ve personally observed
this phenomenon at work in numerous customer

88 MARCH • APRIL 2003 Published by the IEEE Computer Society 1089-7801/03/$17.00©2003 IEEE IEEE INTERNET COMPUTING

Steve Vinoski • IONA Technologies • vinoski@ieee.org

visits and technical conferences.
For certain applications, such as

real-time middleware (in which Doug
has focused much of his work) or air-
line reservation systems that experi-
ence enormous numbers of transac-
tions per day, performance is indeed
critical. Real-time systems, for exam-
ple, tend to have strict time budgets
and deadlines, so minimizing the total
time spent in the middleware maxi-
mizes the overall time available to the
application. For many general middle-
ware applications, however, perfor-
mance is not at all critical. Why, then,
do so many middleware users focus so
intently on performance?

For better or worse, one reason mid-
dleware performance gets so much
attention — regardless of whether the
situation warrants it — is simply that
it’s relatively easy to measure. As I
mentioned, it’s simple to write appli-
cations that measure the time required
for message delivery or round-trip
request–response time. Other perfor-
mance aspects, such as marshaling, are
equally easy to measure.

Imagine that your department is on
the hook to deliver some sort of mid-
dleware-based system, and your man-
ager has asked you to evaluate several
middleware packages, document your
evaluation procedures, and recom-
mend which package to use. As usual,
your deadline to deliver all this is tight
— perhaps impossibly so. Under such
circumstances, it’s relatively straight-
forward to run performance tests for
each package, compare the results, and
base your recommendation on the
fastest system.

Taking this approach is relatively
safe (although not as safe as the brand-
loyalty approach). It means you can
submit a report that cites numerous
research papers on middleware perfor-
mance and includes lots of numbers
and smart-looking graphs — all by sim-
ply taking the output of a few straight-
forward test programs. You might even
be able to obtain the test programs free
from the Internet.

Although this approach might look
impressive on paper and keep your

salary coming, it could be entirely
meaningless, depending on the nature
of your middleware application. It’s a
lot like going out to purchase a new
family sports utility vehicle and com-
ing home with a Porsche 911 Turbo: it
doesn’t have room to actually seat the
family, nor is it capable of carrying
any cargo or going off-road, but it is
the fastest vehicle you can find.

Suppliers
Overemphasize Performance
Unfortunately, middleware suppliers
get caught up in the performance
madness as well. It’s a positive feed-
back cycle: customers demand perfor-
mance, and suppliers whose products
outperform the others win deals. Such

suppliers keep pushing to increase per-
formance, but so do their competitors,
who try to boost their own perfor-
mance to obtain more market share.
All new customers hear from suppliers
is how their product’s performance
stacks up against the competition, and
everything they read talks about per-
formance, so (surprise, surprise) they
demand performance.

Some suppliers even resort to per-
formance trickery to fool prospective
customers. I’ve seen cases where one
supplier compared its highly tuned
shared-memory transport against
competitors’ TCP/IP-based transports
to show a performance advantage,
even though the customers’ applica-
tions were intended to run across
multiple machines in a distributed
networked application in which their
shared memory transports couldn’t
be used.

Other suppliers knowingly compare
the performance of their messaging

systems (capable of sending only
untyped sequences of bytes requiring
no data marshaling, for example)
against RPC or distributed-object sys-
tems that do perform marshaling.
Under such circumstances the messag-
ing system obviously appears faster,
but the suppliers neglect to mention
that because their “fast” middleware
doesn’t support marshaling, the cus-
tomers’ applications must handle those
chores themselves. Buyer beware.

What Else Matters?
The presumption that performance is a
measure of middleware quality ignores
the fact that performance is not the
most pressing issue for many middle-
ware applications. Doug and others

who have spent countless hours help-
ing us all by carefully characterizing
the performance landscape certainly
never intended to pretend that only
performance matters. Depending on
the application, other qualities, such as
scalability, flexibility and adaptabili-
ty, ease of use, tool support, and stan-
dards conformance could very well
take precedence over performance.
Unfortunately, such qualities are not
as easy to measure.

Scalability
All middleware suppliers claim their
systems are scalable. They’re usually
not wrong, as most middleware truly
is scalable in one way or another. Typ-
ically, scalability tests are difficult to
write, for at least three reasons.

• They require a deep understanding
of the runtime nature of the appli-
cation they’re intended to mimic.
Foremost in this understanding

IEEE INTERNET COMPUTING http://computer.org/internet/ MARCH • APRIL 2003 89

Performance Presumption

Because of the difficulties involved in thoroughly

and accurately evaluating middleware,

consumers routinely take shortcuts.

must be knowledge of exactly what
must scale. Is it the number of con-
current user sessions, concurrent
requests, concurrent transactions,
or something else entirely?

• Scalability tests require a deep
understanding of the design pat-
terns and implementation details
that the actual application will use.
Unless you use the exact same
design patterns and implementation
approaches that you’ll use in the
real application, your scalability
tests might not yield the desired
results. They could, in fact, lead you
to choose the wrong middleware.

• Evaluating scalability often requires
heavy involvement by the middle-
ware supplier because they usually
know how to tune their systems to
best suit a given application.

An interesting fact about scalability is
that it actually does depend on perfor-
mance.1 If you expect a server to be
able to handle a high number of con-
current requests, for example, the speed
with which it processes each request
has an impact on scalability. Naturally,
the fewer cycles a server needs to han-
dle a request, the more requests it can
handle in a given time period.

Of course, high performance alone
does not guarantee high scalability.
Some server systems, for example, per-
form well when run as single-thread-
ed but suffer serious performance
degradation as soon as we introduce
multiple threads of control. This occurs
because all the threads are vying for
the same resources and so must block
and waste cycles attempting to acquire
the locks required to use the resources.

This implies that any serious test-
ing of multithreaded middleware
scalability and performance must
attempt to stress the system so that as
many threads as possible execute
concurrently. Such testing can quick-
ly crash code that looks completely
correct but contains subtle race con-
ditions, and debugging such crashes
can stymie all but the very best
developers. Indeed, writing bullet-
proof multithreaded code remains a

bit of an art. In fact, if you want to
do everything you can to ensure your
application’s stability, try to make
sure your middleware supplier’s
developers are better at writing mul-
tithreaded code than you are.

Flexibility
Evaluating flexibility is also difficult,
again, because you don’t completely
know the degree of flexibility your
application requires until it’s been
deployed and exercised under normal
use. Rather than testing for scalability,
middleware evaluators tend to look for
“flexibility points” in the system, typi-
cally in the form of hooks that let them
insert custom code deep in the process-
es and activities the middleware per-
forms. In a previous column, I discussed
a prime example of an approach mid-
dleware suppliers can take to provide
these kinds of hooks: interceptors and
the Chain of Responsibility pattern.2

One caveat about flexibility is that
it’s often at odds with performance. If
you adopt a middleware package for a
certain project because of its flexibili-
ty, you might later find that it simply
doesn’t do the job on a project that
requires high performance. New mid-
dleware technology tends to behave in
this fashion because the focus tends to
be on ease of use and simplicity to
attract early adopters.

Other Issues
As if evaluating subjective qualities
such as configurability, flexibility, and
ease of use wasn’t hard enough, mid-
dleware users’ values vary depending
on where they tend to focus on the
technology-adoption life-cycle curve.3

Early adopters and visionaries tend to
pay attention to the middleware’s “cool-
ness” factor more than practical issues
such as performance, for example,
whereas conservative customers worry
more about performance, enterprise-
scale feature completeness, cost, and
support. Because a large enterprise is
likely to have groups that fall all along
the technology-adoption curve, it’s
important to have a good cross-section
of users from various groups participate

in any flexibility or ease-of-use evalua-
tion intended to help establish a corpo-
rate middleware standard.

Evaluating middleware for confor-
mance to various standards is also far
from straightforward. Good standards
are always evolving, which makes
them moving targets for middleware
suppliers, middleware users, and devel-
opers of conformance test suites.

Because some standards have no
conformance tests, suppliers can claim
whatever level of conformance they
think they can get away with. Other
standards, such as J2EE, come com-
plete with extensive tests that can help
with ensuring standardization; unfor-
tunately, they can still contain enough
loopholes to let problematic imple-
mentations pass the test suite and
claim conformance. Given that the
sheer size of today’s middleware stan-
dards makes it difficult for users to be
familiar with all corners of the speci-
fications, evaluating a middleware
system for strict standards confor-
mance can be a time-consuming and
costly exercise.

It’s all like the old joke where the
patient says, “Doctor, it hurts when I
do this,” to which the doctor replies,
“Well, then don’t do that.” Evaluating
middleware based on qualities other
than performance is too hard, so we
just don’t do it. Unfortunately, we’re
selling ourselves short in numerous
ways when we don’t.

References
1. D. Bulka and D. Mayhew, Efficient C++ Per-

formance Programming Techniques, Addison
Wesley Longman, 2000.

2. S. Vinoski, “Toward Integration: Chain of
Responsibility,” IEEE Internet Computing,
vol. 6, no. 6, 2002, pp. 80–83.

3. G.A. Moore, Crossing the Chasm, Harper-
Collins, 1999.

Steve Vinoski is vice president of platform tech-

nologies and chief architect for IONA Tech-

nologies. He is coauthor of Advanced Corba

Programming with C++ (Addison Wesley

Longman, 1999). Vinoski serves as IONA’s

alternate representative to the W3C’s Web

Services Architecture working group. Con-

tact him at vinoski@ieee.org.

90 MARCH • APRIL 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

