
Toward Integration

The More Things Change . . .

Steve Vinoski • IONA Technologies • vinoski@ieee.org

D eveloping any nontrivial middleware-based
distributed system is hard, regardless of the
middleware technology. Although technolo-

gy’s continuous march should make systems easi-
er to develop, somehow the details always remain
challenging. New technologies only seem to make
simple things simpler; they don’t help with the
more complex things. Horizontal concerns, such
as security, transactions, fault tolerance, load bal-
ancing, and enterprise management, never seem
to get easier, regardless of what middleware devel-
opment platform you choose.

The complexity in deploying a production-
quality middleware system dwarfs its development
difficulty. Along with the application, a lot of mov-
ing parts come into play in a production deploy-
ment: network and computing hardware, operating
systems, and all the software the application depends
on, including databases, management systems, secu-
rity systems, runtime libraries, and virtual machines,
each of which must be proven production-worthy.
Production testing involves many hours of verifica-
tion and burn in, and the problems that invariably
crop up during these test periods typically are hard
to reproduce and complex to solve.

Of course, a system’s care and feeding does not
end at deployment. If applications were static,
maintenance efforts primarily could focus on
tracking down and fixing intermittent bugs that
appeared only after days or weeks of continuous
operation. Unfortunately, middleware applications
rarely are static. Not only do changing business
requirements impact the applications themselves,
but for a variety of reasons, the various platforms,
operating systems, and middleware underneath the
applications also change. Dealing with versioning
and change management in a deployed middle-
ware application can be complicated and costly.

Version Control
Versioning a stand-alone monolithic application
usually is straightforward; you ship a new one,

and the biggest problem you might have to worry
about is backward compatibility with data read or
written by the previous version. Unfortunately, it’s
not so simple with middleware applications, which
typically involve libraries and distribution. These
libraries are dynamic link libraries (DLLs), shared
libraries, and Java archive (JAR) files, which are
physically separate from the application itself. Dis-
tribution means that middleware applications typ-
ically consist of numerous smaller applications or
components that work together over a network.

A good example of versioning coming into play
for distributed middleware systems is the interface
between any two applications or components. For
a client or sender to interact over a network with a
server or receiver, the former must know the mes-
sage syntax that the latter expects. The network
message that the sending application creates typi-
cally indicates the target operation or service and
includes data the receiver expects. If the receiving
application were to change its interface so its oper-
ations or services changed, sending applications
that based their messages on previous interface ver-
sions could very well send messages or requests
that no longer conformed to the expected syntax.

Arguments abound about whether distributed
systems should have explicit interface definitions,
with some claiming that explicit definitions result
in tight coupling, where dependencies between two
or more application components are so great that
no component can be maintained or modified with-
out also requiring changes to the others. It’s true
that wherever tight coupling exists in a deployed
application, versioning issues invariably crop up,
but explicit interface definitions by themselves are
not the primary cause of tight coupling. Such argu-
ments are misguided. Interface versioning issues
apply whether the middleware explicitly employs
an interface definition language (IDL), as in dis-
tributed-object systems like Corba and Microsoft
COM, or whether “interfaces” really are represent-
ed as exchanged documents, as in many messag-

IEEE INTERNET COMPUTING 1089-7801/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society JANUARY • FEBRUARY 2004 87

ing systems. Let’s look at each of these
in turn.

Distributed-
Object Versioning
Let’s consider modifying an already-
deployed Corba interface. If you
change one interface operation’s name,
all applications using that interface
must be recompiled with the new inter-
face definition. Otherwise, clients based
on the original interface will send the
old operation name in their requests,
and the server will reject them. Simi-
larly, if you change an operation para-
meter type definition, then those clients
will marshal data for a parameter that
doesn’t match the data expected by the
revised server. The server also will like-
ly reject this request.

Corba assumes that sender and
receiver have the same understanding
of their marshaled request data; thus,
Corba requests contain no type infor-
mation. This means that some data type
changes could find the server accepting
malformed requests and attempting
operations on the incorrect data they
contain. Changing an operation’s sig-
nature also is problematic because data
marshaled by a sender wouldn’t match
what the receiver is expecting.

These problems imply that if you
want to modify a Corba server without
affecting clients, you should never
modify its operations’ names or signa-
tures or its operation parameter types.
So, what changes can you make to an
interface without adversely affecting
existing client applications?

Adding an operation generally is
acceptable because Corba operations
are identified by name in marshaled
requests, unlike other systems in which
numbers identify operations (as offsets
from the beginning of the interface def-
inition). The IDL compiler guarantees
operation name uniqueness because it
won’t let you overload interface opera-
tion names. Thus, clients aware of the
new operation can send requests for it,
but not knowing about it generally
won’t break existing clients. Adding an

operation can be harmful, however, if
the operation introduces state manipu-
lations on which other existing opera-
tions have been modified to rely.
Changes to implementations of existing
operations always must be backward
compatible so existing clients can rely
on semantics equivalent to those pro-
vided by the previous versions.

Other additions are problematic,
though. Adding an exception to the list
of exceptions that an existing opera-
tion can raise is a no-no: it could cause
an existing client to receive an unex-
pected exception. However, removing
an exception from the list is okay
because existing clients that know
about that particular exception never
will receive it.

Some practitioners dislike the idea of
changing interfaces altogether. For
example, if your interface is used local-
ly within an application, such as across
the boundary of a shared library or DLL,
then adding operations to an interface
could break existing code, depending on
which programming language is used.
In C++, for instance, adding an opera-
tion to an object in a shared library or
DLL could break an existing application
using that library because the addition
could change the layout of the object’s
virtual table. Java binary compatibility
is not as tricky or difficult as in C++,
mainly because the language specifica-
tion defines precisely what it means.1

Even so, changing published interfaces
used locally within a single application
and as distributed interfaces between
applications is inherently difficult.

Because of local–remote trans-
parency problems that can arise from
changing distributable interfaces, some
practitioners suggest that you should
avoid ever modifying an interface once
it’s been deployed. Instead, you should
add operations and types by deriving a
new interface from the existing one.
You then could declare all the new
types and operations in the new
derived interface. Changing a Corba
object’s interface to one that’s more
derived will not break existing clients

because, by definition, the object still
supports the original interface.

Using interface inheritance for ver-
sioning can work, but only in limited
cases. In this case, inheritance uses — or,
perhaps more accurately, abuses — a
type classification mechanism as a ver-
sioning mechanism, and it can get con-
fusing once multiple versions are
required. Microsoft COM, which uses
virtual tables as a fundamental
function-dispatching mechanism, rec-
ommends using inheritance for version-
ing because doing so essentially extends
the virtual table with the new operations
supplied by the derived class. However,
unlike its COM predecessor, Microsoft
.NET does not recommend using inher-
itance in this fashion. Instead, .NET
includes explicit versioning support.2

Specifically, .NET assemblies — collec-
tions of modules and resources that
make up a single unit of deployment —
include versioning information in their
identifiers, and the .NET runtime ensures
that only the correct assembly versions
load for each application.

The .NET versioning mechanisms
have not yet been widely proven
through years of deployment, but given
that they’re based on lessons learned
from COM, they likely will work quite
well for versioning real-world applica-
tions. Note, though, that while these
mechanisms ensure version compatibil-
ity within a single application, they do
not address the distributed application
interface versioning problem. And
unlike .NET, Corba supplies no version-
ing support whatsoever. In general, it’s
important when developing Corba or
.NET distributed systems to know the
rules about what changes maintain
backward compatibility. Depending on
your application, it might make sense to
combine Corba with other technologies
such as XML3 to help with versioning, or
use an entirely different distributed-
object system.4

Messaging Versioning
Messaging systems typically do not
have, or need, a distributed-object sys-

88 JANUARY • FEBRUARY 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

tem’s interface extensibility. Unlike dis-
tributed-object systems in which varia-
tion and versioning occurs at the inter-
face and message levels, messaging
systems tend to have fixed interfaces
with variable messages. The lack of
interface variation is the principal rea-
son that messaging systems generally
are less-tightly coupled than distributed-
object systems. Because the messaging
interface doesn’t typically change, ver-
sioning issues apply only to messages
sent through the system. I can’t cover all
the variations of message types and for-
mats available in message-oriented mid-
dleware, so I’ll focus on a common pop-
ular approach: XML messages.

Proponents often claim that XML
makes applications easier to change,
but XML-based applications can have
just as many versioning issues as any
others. XML itself does not provide any
explicit versioning support or automat-
ically insulate your application from
versioning issues. For example, your
sending application can encode an
XML message and drop it into a mes-
saging queue, but the receiving appli-
cation might not be able to decode it.
Proponents often have touted XML
messages as being self-describing, but
that’s a myth. If an application does not
understand the semantics associated
with the XML tags that appear in a
message, then it will not understand
that message, period. XML tags alone
don’t let applications determine what
unknown messages mean.

The main reason that XML can help
with versioning issues is its flexibility.
For example, you can make attributes
and elements in XML optional, which
means that you can add them to an
existing definition without automati-
cally breaking all applications using
that definition. For example, an XML
description of a music CD might include
separate elements for artist, album title,
and the year the album came out.
Adding an optional new element to
include the producer’s name wouldn’t
necessarily break existing applications.
However, depending on how the appli-

cations are designed and implemented,
they are not immune to breakage.

One popular approach to handling
XML messages in applications is to
generate Java or C++ classes based on
the message definitions. This is the
approach of JSR 31, the Java API for
XML Data Binding (JAXB), as well as
that of its successor, JSR 222 (JSR 222:
Java API for XML Data Binding;
www.jcp.org/en/jsr/detail?id=222).

The principal reason for taking this
approach is to minimize the imped-
ance mismatch between the XML def-
initions and the programming lan-
guage in which the application is
written. This impedance mismatch
arises because general tools such as the
Document Object Model (DOM) or
Simple API for XML (SAX) are not
language-specific and, thus, do not
take advantage of any language’s
native type system or libraries. Rather
than having to read XML messages
and parse them using such general
tools, the JAXB approach tries to fit
more closely into the Java language,
thus trading away flexibility for pro-
grammer convenience and stronger
typing (and presumably fewer pro-
gramming errors as a result). Unfortu-
nately, this type of mapping eliminates
XML’s flexibility.

In XML, the convention is to
ignore unknown elements, but with
programming languages, the norm is
to abort if the application doesn’t
understand something. If the music CD
XML definition previously described is
mapped into a Java class that gets
compiled into one or more applica-
tions, and the new element for the
album producer is subsequently added
to the XML definition, then those Java
classes must be regenerated, and each
application using them must be
recompiled, retested, and redeployed.
There is no practical way around this.

If the applications instead use the
more general SAX or DOM approach-
es, then the code to read and manipu-
late the music CD XML definitions is
much longer, more awkward, and

potentially slower than that required to
deal with the JAXB classes. However,
the approach also is more flexible and
— if coded properly to ignore unknown
optional elements — can easily result in
an application being able to silently
handle the album-producer element or
any other optional element or attribute
added to the revised XML definition.

Versioning Approaches
This column barely scratches the sur-
face of the versioning problem. How-
ever, the major issues I touched on
give a good indication of the state of
the middleware versioning problem,
which can be summed up as follows:
basically, you’re on your own. Most
middleware does little to nothing to
help applications with versioning
problems. Even worse, sometimes
middleware vendors directly con-
tribute to the problem by failing to
properly version their own platforms.
As a result, application versioning
tends to revolve around conventions
and best practices learned along the
way. I wish I had better news, but how
you deal with versioning depends
heavily on each application.

References

1. B. Joy et al., The Java Language Specifica-

tion, 2nd ed., Addison-Wesley, 2000; http://

java.sun.com/docs/books/jls/.

2. D. Watkins, M. Hammond, and B. Abrams,

Programming in the .NET Environment,

Addison-Wesley, 2003.

3. D.C. Schmidt and S. Vinoski, “Corba and

XML, Part 1: Versioning,” C/C++ Users J.,

vol. 19, no. 5, 2001; www.cuj.com/documents/

s=7995/cujcexp1905vinoski/.

4. M. Henning, “A New Approach to Object-

Oriented Middleware,” IEEE Internet Com-

puting, vol. 8, no. 1, 2004, pp. 66–75.

Steve Vinoski is chief engineer of product inno-

vation for IONA Technologies. He’s been

involved in middleware for 15 years. Vinos-

ki is the coauthor of Advanced Corba Pro-

gramming with C++ (Addison Wesley Long-

man, 1999), and he has helped develop

middleware standards for the OMG and W3C.

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2004 89

The More Things Change . . .

