
Toward Integration

The Language Divide

O ne of my favorite movies is 1980’s The Blues
Brothers — the humorous story of two shady
brothers trying to get their band back

together to raise money to save the orphanage
where they grew up. In one classic scene, the
group pretends to be another band, called “The
Good Ol’ Boys,” so that they can play at a music
establishment they find while driving around look-
ing for work. When brother Elwood asks the wo-
man behind the bar what kind of music they
usually feature, she responds, “Oh, we got both
kinds. We got country and western!”

I often get the impression that a similarly
myopic view pervades the enterprise middleware
space as far as programming languages are con-
cerned. If I were to ask a group of typical devel-
opers of middleware-based enterprise applications
what programming languages they used, I wouldn’t
be surprised to hear, “Oh, we use both kinds — Java
and C++!”

When it comes to Web development, scripting
languages such as Perl (www.perl.org), Python
(www.python.org), Ruby (www.ruby-lang.org),
PHP (www.php.net), and Javascript seem to rule
the roost. Java has some presence there as well, of
course, in the form of servlets, JavaServer Pages
and JavaServer Faces, and frameworks such as
Struts and Tapestry. Yet, the converse doesn’t seem
to be true: the intersection between enterprise mid-
dleware and scripting languages appears practi-
cally empty.

Looking Back
A significant predecessor of today’s middleware was
the transaction processing (TP) monitor. The
middleware-level TP monitor evolved from early
systems such as SABRE (jointly developed by
American Airlines and IBM to handle airline reser-
vations) and IBM’s Customer Information Control
System (CICS) and Information Management Sys-

tem (IMS). These early systems, developed in the
1960s and 1970s, were more operating system than
middleware.

As the 1970s gave way to the 1980s, main-
frames came under increasing market pressure
from vendors of minicomputers and Unix work-
station servers who found that customer scenarios
involving mainframe displacement often required
them to provide TP monitor functionality. Ad-
vances in operating systems and networking tech-
nologies allowed those vendors to build their TP
monitors as true middleware, layered above the OS
rather than as part of it.

Such TP monitor middleware systems were gen-
erally written in C or in proprietary languages spe-
cific to the underlying OS, with critical sections
coded in assembly language. This allowed for the
high performance and transaction rates customers
expected from these systems. Furthermore, these
systems required access to OS networking interfaces,
persistent storage interfaces, and process creation
and monitoring facilities that were typically acces-
sible only through C or proprietary language APIs.

Around the same time, significant shifts oc-
curred in software development in general. As
software systems grew larger and lived longer,
worries over maintenance and quality issues grew.
Concerns in these areas fed directly into the cre-
ation of software development approaches such as
structured programming and object-oriented pro-
gramming (OOP). The benefits of modularity and
data hiding were cornerstones of both.

As software development methodologies helped
turn the practice from sheer wizardry into more of
a science-and-engineering endeavor, instructors
in the late 1970s and the 1980s pushed students to
use languages that directly supported structured
programming or OOP. For practical use, such lan-
guages also had to compile into good code that ran
well on the era’s hardware. Imperative languages

82 MARCH • APRIL 2006 Published by the IEEE Computer Society 1089-7801/06/$20.00 © 2006 IEEE IEEE INTERNET COMPUTING

Steve Vinoski • IONA Technologies

such as Pascal, C, and C++ fit these
requirements perfectly, letting devel-
opers focus on stepwise refinement of
functions and using those functions
through programming conventions to
hide data. C++ also added powerful
data encapsulation via objects along
with compiler enforcement of data vis-
ibility. Programmers largely avoided
languages that treated code and data
as equals, or that didn’t run well on the
processors of the day.

The 1980s also saw R&D increas-
ingly steered toward systems based on
remote procedure calls (RPCs) and
distributed objects. Such research was
often based around specialized pro-
gramming languages. In fact, “lan-
guage” might be the wrong term here,
given that these research efforts typi-
cally generated products, such as Emer-
ald (perhaps the most famous and
influential),1 which served as complete
environments that supported object
descriptions, object implementations,
communication runtimes, and directory
services. Typically, such systems were
implemented in C under the covers.

By the late 1980s, all these influ-
ences were starting to make their mark
on the burgeoning middleware indus-
try. As a rule, serious middleware of
the day — even for distributed object
systems — was written in C using data-
hiding techniques and object-based
approaches to ensure maintainability
and code quality. C++ systems were
just beginning to appear by the end of
the decade.

The 1990s saw significant growth
in middleware and middleware-based
applications, as the research and early
prototypes of the 1980s finally turned
into commercially viable software that
was ready for production deployment.
Unsurprisingly, these systems were
largely based on distributed object con-
cepts and were implemented in C++ or
C. As the 1990s wore on, message-
oriented middleware — another descen-
dant from the mainframe world —
gained popularity (again, typically
implemented in C++ or C). Java entered

the picture in the mid-1990s and
quickly became a popular implementa-
tion language for middleware systems
before the decade was out.

One significant area of focus for
1990s middleware was performance.
Building layers of abstraction as mid-
dleware helped isolate applications
from variations and limitations in the
underlying OS, but it also added
potentially significant runtime over-
head. Developers expended much
effort in identifying the sources of this
overhead and devising patterns for
eliminating them.2,3 In general, mid-
dleware’s heritage is such that devel-
opers simply expect it to perform well,
and so it’s not inconceivable that mid-
dleware wouldn’t have succeeded
without the performance focus. Unfor-

tunately, however, other important
areas, such as system features and
API comprehensiveness, sometimes
remain underdeveloped and over-
looked as a result.4

As we entered the 21st century, the
unwritten rules for building middle-
ware systems were well established:
you wrote the system in C++ or Java,
and you focused heavily on perfor-
mance. By and large, the enterprise
middleware space ignored approaches
that didn’t follow these rules.

Across the Divide
Dynamic languages and functional pro-
gramming languages weren’t standing
still while all this was going on. LISP,
the granddaddy of them all, served as
the foundation for research into artifi-
cial intelligence (AI) for several decades.
Still, developers have long viewed this
incredibly simple yet powerful language
as a poor performer because it’s an

interpreted language. Part of the group
I worked in at Texas Instruments in the
mid-1980s developed the “LISP chip” —
a 32-bit microprocessor designed
specifically to enhance LISP applica-
tions’ performance. First released in
1987, the chip was enormous for its
time, packing more than 550,000 tran-
sistors into a square centimeter. Unfor-
tunately, even such specialized
hardware couldn’t help LISP shake its
reputation for poor performance.

The late 1980s and the 1990s saw
the development of interpreted script-
ing languages such as Perl, the Tool
Command Language (Tcl; www.tcl.tk),
and Python. Perl grew out of the system
administration world, offering the capa-
bilities of various Unix tools in a single,
highly portable language. The Univer-

sity of California, Berkeley’s John
Ousterhout developed Tcl to provide an
embeddable command language for
software tools. Python came along a
couple of years later, offering many of
the same capabilities as Perl but with a
much cleaner syntax and style.

Such languages might have been
forever relegated to niches if the World
Wide Web hadn’t come along. The first
Web servers simply returned static files
for each request, but it wasn’t long
before Web site developers realized that
they could use small programs execut-
ed by Web servers to dynamically gen-
erate content. The common gateway
interface (CGI) evolved as a standard
way to let Web servers launch programs
to serve requests. Because handling
such requests typically involved file
access and substantial string manipula-
tion to create HTML responses, script-
ing languages were a natural fit for
solving the problem. Not only did such

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2006 83

The Language Divide

By and large, the enterprise middleware
space ignored approaches that didn’t
follow the unwritten rules.

languages provide highly portable and
easy-to-use file and database access
and string-handling facilities, they also
allowed for rapid development ap-
proaches that fit well with Web site
developers’ “need to tweak.” These lan-
guages let programmers avoid compil-
ing and redeploying programs just to
make small changes to site appearance
and content. With the Web’s incredible
growth in the 1990s, this constant
tweaking was vital to enabling Web
sites to change frequently to always
appear fresh. Scripting languages’ pop-
ularity grew immensely as a result.

The Same, but Different
Interestingly, much similarity exists
between server-side invocations in
object-oriented or service-oriented mid-
dleware and Web server invocations via
CGI or similar approaches. The middle-
ware or Web server receives a request,
dispatches it to whatever entity is reg-
istered to handle it, and then returns
any generated response. Why, then, do
these two camps remain so far apart?

I can think of at least two reasons:
data and performance. Web servers
deal mostly with textual data in the
form of HTML or, increasingly, XML.
Middleware servers, on the other hand,
have traditionally operated on binary
data representing programming lan-
guage data structures, evolving from
early RPC systems that marshaled
requests and responses consisting of C
structs directly to and from memory.
Performance rears its head here be-
cause representing information as text
results in far more data than repre-
senting the same information in bina-
ry format. Nevertheless, with the
advent of SOAP and Web services,
middleware systems now also deal
heavily with XML messages.

Of greater concern in this picture
regarding performance is the CGI
approach’s process-startup overhead.
Starting a new OS process to handle
each incoming request immediately
raises red flags for any respectable
middleware developer. Not surprisingly,

these issues also quickly became prob-
lems in the Web world as sites started
scaling up. Developers thus devised
new approaches, such as building
scripting language interpreters into
plug-ins that could be hosted directly
in-process by the Web server. These
approaches not only avoided the
process-per-request startup overhead
but also brought even greater resem-
blance to request handling in the mid-
dleware and Web worlds.

The Java Bridge
Sitting somewhere in the middle of all
this is Java. For some reason, it doesn’t
suffer from the same performance stig-
ma as previous interpreted languages.
Maybe that’s because hardware was
fast enough by the time it came along
to make Java applications run well.
Perhaps Sun’s massive marketing push
in the ’90s made the difference, or
maybe Java’s ability to work well in
the Web context helped it ride the
Web’s growth. Whatever the reason,
Java’s popularity has helped restore
respectability to interpreted program-
ming languages in general.

Java sits in the middle of this pic-
ture more than just figuratively. The
Java servlet architecture, for example,
has its feet planted firmly in both the
middleware and Web camps. Servlets
handle HTTP requests, thus integrating
cleanly with the Web, and yet their
Java implementations allow them to
easily integrate with other back-end
Java and non-Java middleware and
frameworks. Not surprisingly, servlets’
utility and flexibility have led devel-
opers to often cite them as the single
best part of Java’s foray into the enter-
prise middleware space.

Java, and now C#, might also pro-
vide a more direct answer to bridging
the language divide between middle-
ware and the Web. If you separate both
Java and C# into two parts — the pro-
gramming language and the virtual
machine (VM) — it’s readily apparent
that other languages, including the
widely popular scripting languages,

can also sit on top of the VMs. Several
projects have already been doing pre-
cisely that. For example, Jython (www.
jython.org) is a Python implementa-
tion that runs on the Java VM, where-
as IronPython (www.ironpython.com)
is a Python implementation for the
Common Language Runtime that sits
under C#. Furthermore, Java Specifi-
cation Request (JSR) 223 has opened
the door to integrating other scripting
languages into the Java platform (see
www.jcp.org/en/jsr/detail?id=223). For
example, the next release of Java,
codenamed Mustang, uses JSR 223 to
integrate the Mozilla Rhino Javascript
interpreter (www.mozilla.org/rhino/)
into the platform.

T he days of C++-only or Java-only
middleware systems are numbered,

and dynamic scripting languages will
soon become an important part of
middleware development. Perhaps
when asked what languages they use,
middleware developers of the near
future will respond, “Oh, we use both
kinds — compiled and interpreted!”

References

1. A. Black et al., “Distribution and Abstract

Types in Emerald,” IEEE Trans. Software

Engineering, vol. 13, no. 1, 1987, pp. 65–76.

2. D.C. Schmidt et al., Pattern-Oriented Soft-

ware Architecture, Volume 2: Patterns for

Concurrent and Networked Objects, John

Wiley & Sons, 2000.

3. M. Voelter, M., Kircher, and U. Zdun, Remot-

ing Patterns: Foundations of Enterprise,

Internet, and Realtime Distributed Object

Middleware, John Wiley & Sons, 2004.

4. S. Vinoski. “The Performance Presumption,”

IEEE Internet Computing, vol. 7, no. 2, 2003,

pp. 88–90.

Steve Vinoski is chief engineer for IONA Tech-

nologies. He’s been involved in middleware

for more than 17 years. Vinoski has helped

develop middleware standards for the Object

Management Group (OMG) and the World

Wide Web Consortium (W3C). Contact him

at vinoski@ieee.org.

84 MARCH • APRIL 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

