
IEEE INTERNET COMPUTING 1089-7801/03/$17.00©2003 IEEE Published by the IEEE Computer Society JANUARY • FEBRUARY 2003 69

Toward Integration

Service
Discovery 101
I recently had to replace the furnace in my

home. I’d never had to do that before, so I
had to figure out whom to hire to get good

quality at a fair price. Unfortunately, none of my
friends or coworkers could offer any first-hand
advice. I did a few online searches, found some
suitable furnace service companies in my area,
and requested estimates from each of them. I
finally chose a service provider based on the type
of furnace I wanted and the cost estimate the
provider gave me. (I’m happy to report that the
job went according to plan.)

In the big picture, my little furnace anecdote is
rather unremarkable. In our day-to-day lives, each
of us frequently requires services on our homes,
mechanical equipment, lawns, swimming pools,
and even our persons, such as with hair care and
dentistry. We find suitable suppliers for each ser-
vice by networking with family, friends, and
acquaintances or by using search services such as
telephone book or online directories to decide who
can best provide the service with the qualities we
desire.

A key aspect of the service-oriented architec-
ture approach1 for middleware is that services
advertise themselves using directory or lookup
services so that prospective clients can find them.
The service location and discovery abstractions
required to support this aren’t much different from
those we use to conduct business with other peo-
ple. As a result, we can gain insights into how dis-
tributed service discovery systems work by com-
paring them to everyday human-oriented service
discovery approaches.

Back in the Old Days
Years ago, people didn’t have much choice when
it came to service providers. In the old American
West, for example, if your horse needed shoe work,
you went to the blacksmith. If you needed medical
attention, you sent word to the doctor. Not a
blacksmith or a doctor, but the blacksmith or the

doctor — people possessing such skills were few
and far between, and communities were lucky if
they had such professionals available within close
proximity. If these people were away or otherwise
unavailable when you required their services, you
were out of luck.

Before the 1990s, many distributed systems
were a lot like this, typically single instances
hard-wired together. Service consumer applica-
tions required knowledge of low-level network
addressing details, such as numeric network
addresses and port numbers, to talk to service
provider applications. If those addressing details
changed, the consumers also had to change and
be redeployed. If a provider application did not
perform well, the consumer applications had to
either work around it or suffer through it. If the
network became disconnected or if the service
provider stopped running, the consumer applica-
tions were generally unable to continue operat-
ing. In such systems, there was no service discov-
ery to speak of.

The American West has advanced well beyond
its one-blacksmith and one-doctor days. Similar-
ly, distributed systems architectures have ad-
vanced in terms of scale, availability, and uptime,
with service discovery normally considered a crit-
ical part of any distributed computing system. But
despite these advances in understanding and
capabilities, a surprising number of distributed
systems designed and deployed today do not use
service discovery.

This lack of foresight is usually due to design-
ers thinking of service discovery as overkill or as
unnecessary performance overhead. They think,
“My system will never need to be extended to the
point that it needs service discovery.” Often, such
systems either wither on the vine, quickly failing
and winding up on the compost heap, or they
become victims of their own success and require
continuous costly maintenance just to keep them
up and running.

Steve Vinoski • IONA Technologies • vinoski@ieee.org

70 JANUARY • FEBRUARY 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

Naming
Early telephone users would pick up a
receiver and crank a handle. An oper-
ator then would ask them whom they
were trying to contact. Callers supplied
the name of the person or business
they were trying to reach, and the
operator created the connection for
them. Later, as the phone system grew
and systems of phone numbers stabi-
lized, callers could still ask the opera-
tor to connect them to a specific per-
son, or they could ask them to connect
to a number.

In software development, we’re
fond of solving problems by adding
levels of indirection. Much like a tele-
phone operator, a naming service pro-
vides a level of indirection that isolates

service consumers from the addressing
and location details of service
providers. Consumers need know only
the name of the service they wish to
find. The naming service stores an
association between a name and the
address and location details for the
named service.

Like a caller using telephone white
pages, a consumer application looks up
the desired service name in the naming
service, which returns the associated
service provider information. The con-
sumer then uses this information to
interact with the provider. Performing
a name lookup on an implementation
of the Java Naming and Directory
Interface, for example, returns a Java
object that the caller can use to invoke
the named service.

One difference between most nam-
ing services today and the telephone
operators of yesteryear is that a nam-
ing service typically does not connect
a caller to the service it’s requesting.

The reason for this is the same as one
of the reasons telephone operators
are used relatively less frequently
than they once were: scalability.

A naming service implementation
that routes all messages between
callers and services will become a
bottleneck as the number of callers
and services increases. Telephone
white pages effectively distribute
lookup processing among sub-
scribers, thereby significantly reduc-
ing workload for centralized opera-
tors. Similarly, naming services
supply enough information to let
consumers interact directly with ser-
vices and stay out of the way other-
wise, thus avoiding becoming cen-
tralized bottlenecks.

Trading
If a pipe were to burst in your home,
you’d probably want to call a plumber
as quickly as possible. Unless you hap-
pen to have a plumber as a personal
friend, it’s unlikely that you could use
the white pages to find one. Instead,
you’d turn to the yellow pages, look up
the category “Plumbers,” and then
choose one from among those listed.
Perhaps you’d narrow your choice by
first considering only those plumbers
in the same city as you, then narrow it
further by considering only those who
offer 24-hour emergency service, and
finally choose the first one from the
remaining list.

In distributed systems, a discovery
service that provides lookup based on
service properties is generally referred
to as a trader. A consumer first decides
what properties it desires from the ser-
vice it’s seeking. The trading service
matches those properties against the
properties of the services registered

with it, returning to the consumer
details for those services that match.
Matching algorithms are usually non-
trivial, tend to involve mandatory and
optional properties and multiple prop-
erty types (such as Boolean, integer,
and string), and usually let prospective
consumers specify the tolerances,
ranges, and operations to be applied to
determine matching.

A common trader example is one
in which an application searches for
a printing service. The application
requires a color Postscript printer that
can print on A4 paper at a rate of 6 to
8 ppm, so it expresses these proper-
ties as part of its lookup operation on
the trader. Based on these properties,
the trader returns a list of printers
that provide the qualities the applica-
tion seeks.

This list not only contains informa-
tion on how to interact with each
printer, but it also contains all the
properties exported by each printer.
The application might use these addi-
tional properties to further narrow the
selection. For example, each printer
might have a “location” property that
the application displays in its GUI to
let the user select the printer from
among those returned by the trader.

You can find many trader-like sys-
tems on the Web. For example, imag-
ine that you’re looking for a vendor
for a particular type of item. There are
sites that let people rate online ven-
dors so that prospective buyers can
use the ratings to choose the best ven-
dors and avoid those who provide
poor-quality service. Such rating sys-
tems are simply the Web version of
traditional “word of mouth” network-
ing that friends and families use to
find the best mechanic, carpenter, and
so on. Without rating or evaluation
systems, suppliers could make virtu-
ally any claims they wanted. The
accuracy of their service properties
would thus be questionable, and
would, as a result, be ultimately use-
less to prospective customers.

The much-hyped world of Web ser-
vices in which applications trade for
other applications’ services over the

Such rating systems are simply the Web version

of traditional “word of mouth” networking used

to find the best mechanic,carpenter,and so on.

IEEE INTERNET COMPUTING http://computer.org/internet/ JANUARY • FEBRUARY 2003 71

Service Discovery 101

Internet requires trader capabilities but,
unfortunately, few trader systems actu-
ally incorporate any form of rating or
feedback. The OMG Trader,2 though,
does support dynamic properties,
which are evaluated dynamically when
a lookup operation is performed, not
statically when the service registers
with the trader.

While dynamic properties provide
greater service description accuracy—
for example, they could be used to
implement a load-balancing service by
having consumers look up services
based on lightest dynamic load—
they’re still service-controlled and,
thus, do not enable consumers to use
them to rate the services they use.
UDDI3 provides no dynamic properties.
Dynamic discovery and use of Web
services on an Internet scale in busi-
ness settings cannot work unless ade-
quate rating services are in place.

Flexible Discovery
Given that service discovery depends
on discovery services, how does an
application actually find a discovery
service? When it comes to discovering
services in our everyday lives, we
know to use the phone book, call the
telephone directory service, ask friends
or family, or use online rating sites.
Applications, however, generally do
not have the luxury of the richness
and stability of human communica-
tions available to them. For applica-
tions, references or handles to discov-
ery services are often supplied through
configuration mechanisms that load
the information at application startup.

Relying on static configuration data
to bootstrap an application with
respect to discovery services works, but
it’s loaded with potential problems. For
example, what happens if the naming
service configured for a collection of
applications goes down? Configuration
can supply information for backup ser-
vices as well, but what if the backups
fail? There’s a definite limit to the
amount of configuration data that
administrators are willing to maintain
manually for enterprise-scale distrib-
uted systems. They want to specify the

bare minimum amount of bootstrap-
ping configuration data required to get
the system up and running, and then
they want the system alone to discov-
er and keep track of everything else.
Imagine if you had to manually speci-
fy information to your phone about
how to connect itself into the tele-
phone system every time you wanted
to use it.

Techniques based on network mul-
ticast or broadcast provide an elegant
solution to the problem of discovering
discovery services. Such techniques
effectively add yet another level of
indirection. Rather than attempting to
contact a naming service at a particu-
lar address hard-coded into a configu-
ration or properties file, for example,

an application might send a request for
the service to a broadcast or multicast
address, then wait for naming service
implementations to respond with
information about how to request ser-
vices from them using regular point-
to-point style communications. Note
that such solutions also handily
address issues related to discovery ser-
vice failure. Should an application find
that the discovery service it’s using has
failed, it need only send another
broadcast or multicast message to find
a new one.

I’ve recently become intrigued by
Apple’s Rendezvous service discovery
protocol.4 While Rendezvous is direct-
ed more at easily connecting comput-
ers and devices through multicast-
based and trader-like mechanisms, it
applies to software as well. Apple uses
it for its iChat instant messenger sys-
tem, for example, as well as for file
sharing.

Imagine a middleware world in
which all kinds of services — for
example, naming services, traders,

event and notification services, load
balancers, and system monitors and
managers — could discover each other
and effectively use each other’s ser-
vices without the hassle of adminis-
trative setup or maintenance. Jini (see
www.sun.com/software/jini) proved
that this approach is workable, at least
for Java-centric distributed systems.
Just as the dynamic host configura-
tion protocol (DHCP) lets me easily
configure my laptop into most net-
works wherever my travels take me,
protocols such as Rendezvous will
push middleware systems toward sup-
porting self-configuration and dy-
namic service discovery, making them
truly adaptive to service and network
topology changes.

References
1. S. Vinoski, “Web Services Interaction Mod-

els—Part 1: Current Practice,” IEEE Internet
Computing, vol. 6, no. 3, May/June 2002,
pp. 89–91.

2. Object Management Group (OMG), “Trad-
ing Object Service Specification,” OMG
document formal/00-06-27, version 1.0,
May 2000, available at http://cgi.omg.org/
docs/formal/00-06-27.pdf.

3. Organization for the Advancement of
Structured Information Standards (OASIS),
“Universal Discovery, Description, and
Integration, Version 3.0,” 19 July 2002,
available at http://cgi.omg.org/docs/
formal/00-06-27.pdf.

4. “Mac OS X v10.2 Technologies: Ren-
dezvous,” white paper, Apple Computer,
Oct. 2002, available at www.apple.com/
macosx/pdfs/Rendezvous_TB.pdf.

Steve Vinoski is vice president of platform tech-

nologies and chief architect for IONA Tech-

nologies. He is coauthor of Advanced CORBA

Programming with C++ (Addison Wesley

Longman, 1999). Vinoski serves as IONA’s

alternate representative to the W3C’s Web

Services Architecture working group.

Techniques based on network multicast or

broadcast provide an elegant discovery solution.

