
Toward Integration

Scripting JAX-WS

IEEE INTERNET COMPUTING 1089-7801/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society MAY • JUNE 2006 91

Steve Vinoski • IONA Technologies

I n my last column, I explored possible reasons
for the existence of “the language divide,”
which arises in the traditional standards-based

middleware community because few developers
use dynamic languages to implement their appli-
cations (March/April 2006, pp. 82–84). Instead,
they seem to strongly favor Java and C++.

As a long-time fan of both dynamic languages
and middleware, I’d like to help shrink or even
eliminate the divide, but describing the issues and
highlighting the situation isn’t the same as direct-
ly contributing a usable solution. This time, I
describe an integration of the ECMAScript pro-
gramming language1 — more commonly known as
JavaScript — with an implementation of the Java
API for XML Web Services (JAX-WS) 2.0.2 This
integration lets developers implement JAX-WS
services using either plain JavaScript or its XML-
oriented counterpart, the ECMAScript for XML
(E4X) language.3

JavaScript and E4X
Despite its name, JavaScript and the Java lan-
guage are unrelated, except perhaps by some
similarity in syntax. Brendan Eich of Mozilla
invented JavaScript in 1995 as a scripting lan-
guage for use within the Netscape Web browser to
allow Web pages to be more dynamic. The result
is an interpreted language with a simplicity that
belies its power.

JavaScript supports only a few types: numbers,
strings, booleans, functions, and objects (it also
supports arrays, but they’re technically objects as
well). It supports object-oriented programming, but
in a different way than most developers are used
to. JavaScript objects are essentially data struc-
tures containing name–value pairs called pro-
perties. Because JavaScript supports first-class
functions, object methods are simply properties
whose values are functions. JavaScript inheritance

differs from class-based languages as well; because
JavaScript has no notion of classes, it supports
inheritance through prototype objects.

JavaScript is best known for its use in Web
pages. One currently popular approach for enhanc-
ing sites’ interactive nature and responsiveness is
via Asynchronous JavaScript and XML (AJAX; see
http://en.wikipedia.org/wiki/AJAX). With AJAX,
Web pages contain JavaScript code that asyn-
chronously invokes requests on a Web server by
creating an XmlHttpRequest request object,
attaching to it a JavaScript callback function to
handle the response, and then invoking the re-
quest. AJAX enhances responsiveness and inter-
activity by allowing specific page updates without
requiring full page reloads. All the hype currently
surrounding AJAX could lead you to believe that
it’s a new approach, but it’s really been in use for
about 10 years. Its current popularity is due to the
fact that different Web browsers have finally
gained reasonable consistency in their support of
JavaScript. Despite its popularity for use within
Web pages, however, JavaScript isn’t limited to
browser applications.

E4X is a JavaScript extension geared toward
handling XML. Specifically, it treats XML as a
first-class type that can be created, accessed, and
modified using intuitive syntax — as with any
other JavaScript type. Later I’ll show examples of
both JavaScript and E4X.

JAX-WS 2.0
The JAX-WS 2.0 specification — the new version
of the Java API for XML-Based RPC (JAX-RPC) —
defines standard APIs and approaches for building
Java-based Web services. As its name implies,
JAX-RPC was concerned mostly with how to
implement RPC-oriented Web services in Java.
JAX-WS expands and improves on the specifica-
tion in several ways, including

• tying together and updating its sup-
port for several base Web services
specifications, such as SOAP 1.2;

• providing a coherent design for
using Java annotations to specify
Web services metadata;

• providing support for document-
oriented Web services, asynchro-
nous services, and services that use
transports other than HTTP;

• addressing implementation issues
surrounding handlers, which are
interceptors that provide hooks into
message flows between senders and
receivers; and

• describing practices for dealing
with versioning in Web services.

Systems based on RPC-oriented
specifications such as JAX-RPC gener-

ally attempt to let applications work
with data in the form of native pro-
gramming language types. Such sys-
tems hide the mechanisms by which
application data are marshaled to and
from network form, in addition to hid-
ing the network data formats. Making
remote requests look like local method
calls might seem like a good idea at first
glance, but the approach has several
significant and well-documented prob-
lems. These include the fact that remote
methods can suffer partial failures with-
in the overall distributed system that
can’t occur with local calls,4 as well as
that mapping between marshaled data
types and language-specific types is
often imperfect.5 As I described in my
September/October 2005 column,6

Steve Loughran and Edmund Smith of
Hewlett-Packard Laboratories authored
a detailed critique of JAX-RPC, which
included the fact that the specification
“relies on a perfect two-way mapping

between XML data and native lan-
guage objects.”7 They refer to such
mappings as object/XML mappings,
often abbreviated as “O/X mappings”
or “X/O mappings.”

Attempting to devise an X/O map-
ping for JavaScript service imple-
mentations would create much the
same problems as those associated
with the Java X/O mappings. Fortu-
nately, although JAX-WS also relies
on an X/O mapping, and thus presum-
ably suffers from the same problems
that Loughran and Smith attribute to
JAX-RPC, it offers other approaches
for implementing services as well. One
improvement that JAX-WS makes
over JAX-RPC is that it provides dis-
patch and provider interfaces for deal-
ing directly with messages — typically,

SOAP messages or SOAP message pay-
loads — to avoid RPC-oriented mar-
shaling layers and the problems
associated with X/O mappings.

The dispatch and provider inter-
faces fit well with JavaScript because
an X/O JavaScript mapping would
likely be unnatural to JavaScript pro-
grammers. In a Web browser environ-
ment, JavaScript programs access
HTML pages and XML data through
Document Object Model (DOM)
objects. Therefore, within a JAX-WS
setting, providing the JavaScript pro-
grammer with a DOM-based approach
for accessing raw JAX-WS messages
and message payloads through a
provider interface introduces a natural
path for developing JavaScript-based
service endpoints. Given that E4X
treats XML as a first-class type, direct
access to XML messages and message
payloads is an even better fit in E4X
than DOM in plain JavaScript.

Implementation
Implementing the underpinnings for
JavaScript Web service implementa-
tions in JAX-WS obviously requires
supporting infrastructure for both
JAX-WS and JavaScript. In develop-
ing a JAX-WS implementation, I chose
the Celtix open-source enterprise ser-
vice bus (http://celtix.objectweb.org) —
in part because, as of this writing, it’s
less than a year old, and its design and
implementation are both very clean.
This helps simplify the job of figuring
out how to integrate JavaScript into it.
Another reason I chose Celtix is that
some of the primary developers sit a
couple rows away from me at my
office, so answers are readily available
if I have any questions about the code.

Given that Celtix is implemented in
Java, it’s best to use a Java-based
JavaScript engine such as the very pop-
ular Mozilla Rhino open-source engine
(see www.mozilla.org/rhino/). Nearly a
decade old, it supports JavaScript and
E4X and is readily embeddable into
Java applications. With Rhino, it’s rel-
atively easy to invoke Java methods
from JavaScript and vice versa.

Support for JavaScript service
implementations in Celtix is relatively
straightforward. First, Celtix provides
an application class that accepts the
names of JavaScript files, E4X files, or
the directories containing them. For
each JavaScript file (with a .js suffix)
or E4X file (with a .jsx suffix) specified
on the command line, the application
calls Rhino to compile the file; assum-
ing that this succeeds, the application
class then creates JAX-WS Provider
instances and publishes them as ser-
vice endpoints.

One tricky problem with publish-
ing a JavaScript service implementa-
tion is determining what form the
implementation expects for incoming
requests. This problem’s two aspects
are determining

• whether the implementation ex-
pects a full message or just a pay-
load, and

92 MAY • JUNE 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

Because JavaScript doesn’t support Java
annotations, it can’t fulfill JAX-WS
annotation requirements by itself.

• whether the implementation is
plain JavaScript or E4X.

The latter is easy, given that the input
file suffixes should be different for the
two languages. The former isn’t quite
as straightforward.

JAX-WS relies on Java annotations
for specifying metadata associated
with Web service implementations.
These annotations generally help tie
Java implementations together with
the details of the WSDL they imple-
ment. For example, JAX-WS requires
every Provider implementation to
carry a WebServiceProvider anno-
tation. This particular annotation spec-
ifies the service’s name, the name of
the service’s port, the service’s target
XML namespace, and a URL for the
WSDL description. The ServiceMode
annotation specifies whether the
Provider implementation wants full
messages or just message payloads. If
no ServiceMode annotation is pre-
sent, the Provider implementation
receives a message payload. Still
another service annotation is Bind-
ingType, which specifies the binding
the JAX-WS runtime should use when
publishing the endpoint. If not present,
the binding type defaults to the SOAP
1.1/HTTP binding.

Because JavaScript doesn’t support
Java annotations, it can’t fulfill JAX-
WS annotation requirements by itself.
To solve this, the Celtix JavaScript sup-
port code includes general Java
Provider implementations that delegate
to JavaScript and E4X functions. These
delegators specify defaulted annota-
tions as required, but JavaScript service
implementations must still somehow
specify the required metadata. We
achieve this by declaring global
JavaScript variables that supply the
necessary metadata. After Celtix
invokes Rhino to compile the Java-
Script or E4X implementations, it then
iterates through the compiled code
looking for global variables whose
names start with the string “WebSer-
viceProvider,” which should be

JavaScript objects that specify annota-
tion metadata. Upon finding the meta-
data, Celtix uses it to register the
specified JavaScript or E4X service end-
point implementation in its runtime.

For example, such a variable might
look like this:

var WebServiceProvider1 = {
‘wsdlLocation’:

‘file:./hello_world.wsdl’,
‘serviceName’:

‘SOAPService1’,
‘portName’: ‘SoapPort1’,
‘targetNamespace’:

‘http://objectweb.org/hw’,
‘ServiceMode’: ‘MESSAGE’,

};
WebServiceProvider1.invoke =

function(request) { ... };

This variable supplies information that
exactly matches what would appear in
a Java WebServiceProvider annota-
tion, with two additions. First, it also
includes the equivalent of the Java
ServiceMode annotation, rather than
making that a separate variable. It
treats the Java BindingType annota-
tion (not used in this example) the
same way. Because this example spec-
ifies “MESSAGE” as the service mode
and doesn’t override the default bind-
ing type, the implementation will
receive requests in the form of full
SOAP 1.1 messages. The variable also
includes a property named invoke,
which should refer to a JavaScript
function — effectively serving as an
implementation of the base Java
Provider interface’s invoke method.

When the Celtix runtime receives
a request for a JavaScript or E4X ser-
vice, it passes it up to the delegator
Provider implementation that the
Celtix JavaScript support code previ-
ously published as the service end-

point implementation. The delegator
then converts the request as required
by the implementation. If the imple-
mentation is plain JavaScript, the cur-
rent delegator implementation wraps
the incoming DOM document as a
JavaScript object and passes it to the
JavaScript invoke function. Given
that the Rhino JavaScript engine
allows direct access to Java code from
JavaScript, the latter can invoke
methods on the Java DOM object just
as normal Java code would. In the
E4X case, the delegator converts the
incoming DOM object into an E4X
XML object and passes it to the
invoke function. Future modifica-
tions to the Celtix JavaScript support
code will include more effective mes-
sage handling that avoids the DOM

and E4X conversions that currently
take place in the delegator.

For example, consider a request
with the following XML payload:

<ns:greetMe xmlns:ns=
“http://objectweb.org/hw/ns”>
<ns:requestType>Jake

</ns:requestType>
</ns:greetMe>

Let’s assume the service implemen-
tation just wants to return a response
consisting of a similar document that
precedes the name provided in the
request with the string “Hi.” For this
example, the response document
would be

<ns:greetMeResponse xmlns:ns=
”http://objectweb.org/hw/ns”>
<ns:responseType>Hi Jake
</ns:responseType>

</ns:greetMeResponse>

A plain JavaScript implementation

IEEE INTERNET COMPUTING www.computer.org/internet/ MAY • JUNE 2006 93

Scripting JAX-WS

Rhino makes it easy to invoke Java
methods from JavaScript and vice versa.

can do that using normal Java DOM
methods to create and populate the
response document. An E4X imple-
mentation is even simpler:

var ns = new Namespace('ns',
'http://objectweb.org/hw/ns');

WebServiceProvider1.invoke =
function(req) {
default xml namespace = ns;
var name =
(req..requestType)[0];
var resp =
<ns:greetMeResponse
xmlns:ns={ns}>
<ns:responseType>
{'Hi ' + name}
</ns:responseType>
</ns:greetMeResponse>;
return resp;

}

Note how E4X lets us make XML
statements directly inline. This ap-
proach is superior to the DOM ap-
proach because it’s easier to read, less
verbose, and more easily reflects the
structure of the XML documents being
manipulated. E4X also allows XML
values and attributes to be set and
accessed using the normal JavaScript
property access operator

resp.ns::responseType =
‘Hi ‘ + name;

which is an equivalent way to set the
return string in the responseType
XML element.

T he JavaScript and E4X approaches
to implementing JAX-WS services

provide several benefits over tradi-
tional Java or C++ approaches. First,
manipulating XML documents com-
pletely avoids X/O impedance-
mismatch problems. Next, service
implementation modifications require
no recompilation; just modify your
JavaScript or E4X code and rerun the
application. Service implementations

need to be flexible so they can change
as quickly as business requirements
change, and I vastly prefer this ap-
proach to developing service im-
plementations over the traditional
approach of slogging through heavy-
weight Java or C++ code. If you’re
interested in experimenting with Celtix
JavaScript/E4X service implementa-
tions, the code will be available from
http://celtix.objectweb.org by the time
you read this. By then, I’ll also likely
have added support for JavaScript/E4X
on the client side. In the near future, I
also hope to add similar support for
Jython (www.jython.org) clients and
services to Celtix.

References

1. ECMA-262, ECMAScript Language Specifi-

cation, 3rd ed., ECMA Int’l, Dec. 1999; www.

ecma-international.org/publications/files/

ECMA-ST/Ecma-262.pdf.

2. R. Chinnici, et al. “The Java API for XML

Web Services (JAX-WS) 2.0,” proposed final

draft standard, Sun Microsystems, 7 Oct.,

2005; www.jcp.org/en/jsr/detail?id=224.

3. ECMA-357, ECMAScript for XML Specifi-

cation, 2nd ed., ECMA Int’l, Dec. 2005; www.

ecma-international.org/publications/files/

ECMA-ST/Ecma-357.pdf.

4. J. Waldo et al., A Note on Distributed Com-

puting, tech. report SMLI TR-94-29, Sun

Microsystems Labs, 1994; www.sunlabs.

com/technical-reports/1994/abstract-29.html.

5. S. Vinoski, “It’s Just a Mapping Problem,”

IEEE Internet Computing, vol. 7, no. 3, 2003,

pp. 88–90.

6. S. Vinoski, “RPC Under Fire,” IEEE Internet

Computing, vol. 9, no. 5, 2005, 93–95.

7. S. Loughran and E. Smith, Rethinking the

Java SOAP Stack, tech. report HPL-2005-83,

Hewlett-Packard Bristol Labs, May 2005;

www.hpl.hp.com/techreports/2005/HPL-2005

-83.html.

Steve Vinoski is chief engineer for IONA Tech-

nologies. He’s been involved in middleware

for more than 17 years. Vinoski has helped

develop middleware standards for the Object

Management Group (OMG) and the World

Wide Web Consortium (W3C). Contact him

at vinoski@ieee.org.

94 MAY • JUNE 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

Here
now
from
the IEEE
Computer
Society

IEEE
ReadyNotes

Looking for accessible tutorials
on software development,
project management, and
emerging technologies? Then
have a look at ReadyNotes,
another new product from the
IEEE Computer Society.
These guidebooks serve
as quick-start references
for busy computing
professionals. Available as
immediately downloadable
PDFs (with a credit card
purchase), ReadyNotes
are here now at
http://computer.org/readynotes.

