
Toward Integration

Ruby Extensions

L ast time, I reviewed Maik Schmidt’s Enter-
prise Integration with Ruby1 as a means of
exploring dynamic languages’ applicability

to middleware integration projects. Using lan-
guages such as Ruby for these projects is straight-
forward when developers can create pure dynamic
language applications that access preexisting ser-
vices, even though such services (often considered
“legacy”) are typically implemented in “tradition-
al” middleware languages such as Java, C++, or C.
This approach works reasonably well because the
dynamic language applications typically reside in
separate address spaces from the services they use,
accessing the services only through avenues that
guarantee separation, including database drivers
and network connections.

Yet, not all enterprise integration projects involve
such clean separation. Are dynamic languages like
Ruby still useful in situations that require directly
coupling the dynamic code to the legacy code? Late-
ly, in my own work, I’ve been exploring what it takes
to cleanly integrate Ruby into an existing C++ mid-
dleware system. In this column, I describe some of
the issues I’ve run into along the way and detail the
approaches I’ve found to work best.

Java is Easy
First, let me state that I won’t explore the integra-
tion of dynamic languages with Java in this col-
umn because the process is pretty simple. The Java
Virtual Machine (JVM) is steadily evolving into a
multilanguage platform, partly in response to com-
petition from Microsoft’s Common Language Run-
time (CLR) and partly due to demand from
dynamic language aficionados. Multiple dynamic
language implementations already exist on the
JVM, including JavaScript, ECMAScript for XML
(E4X), Jython, BeanShell, Groovy, and JRuby. In
fact, Java 6 will include the Mozilla Rhino
JavaScript implementation.

Integrating dynamic languages with Java is
relatively easy because at runtime, the languages
all share the same VM under the covers, which lets
dynamic languages easily call into and share data
with Java code and vice versa. Several Java Spec-
ification Requests (JSRs) — specifically, 223 (script-
ing engine), 241 (the Groovy scripting language),
274 (the BeanShell scripting language), and 292
(additional VM bytecode for dynamic language
support) — make it clear that integrating dynamic
languages with Java is growing in importance and
will thus get even easier over time.

Two Approaches
Unfortunately, integrating C-based dynamic lan-
guage implementations with C++ and C applica-
tions is more challenging because of the diversity
of approaches and application architectures
involved. Unlike Java, such systems lack a unify-
ing VM underneath them. Furthermore, middleware
systems normally use event loops, multiple threads,
and other such features, which can create integra-
tion nightmares because each application typically
assumes that it has complete control in those areas.

Combining a chunk of C++ or C middleware
with a dynamic language to create a cohesive appli-
cation normally means wrapping the middleware
with the dynamic language. Under such a setup,
developers work directly with the dynamic lan-
guage, and the middleware hidden underneath
becomes essentially an implementation detail. Lay-
ering a C-based dynamic language implementation
over C++ or C middleware generally requires “glue
code” that resides between the dynamic language
and the middleware. Developers can create this code
either manually or using code-generation tools.

One of the best-known code-generation tools
for automating the integration of C++ or C code
into a dynamic language is the Simplified Wrap-
per and Interface Generator (SWIG; www.swig.

IEEE INTERNET COMPUTING 1089-7801/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society SEPTEMBER • OCTOBER 2006 85

Steve Vinoski • IONA Technologies

org). A developer creates an interface
description file that declares the C++
or C functionality to export to the
dynamic language, from which SWIG
tools generate code that ties that func-
tionality into the conventions and
contracts expected by the dynamic
language. Such code is then typically
compiled into library modules that the
dynamic language runtime can load
on demand. SWIG supports a wide
variety of dynamic languages, includ-
ing Ruby.

Unfortunately, SWIG is not a
panacea. The code it generates can eas-

ily suffer from impedance-mismatch
problems, not unlike those encountered
when exporting Java or C++ objects
directly as Web services.2 The C++ or C
functions that SWIG makes available
directly to the dynamic language envi-
ronment can often be a poor fit due to
style or granularity issues.

For example, while writing this col-
umn, I was playing with the IOKit
framework (http://developer.apple.
com/documentation/DeviceDrivers/
Conceptual/IOKitFundamentals/) on
Mac OS X 10.4, which lets programs
access computer power information.
Through the framework, programs can
determine, for example, whether the
system is running on AC power or on
battery, and how much charge is left in
the battery. The AC cord on my Power-
book G4 often slips out just enough so
that the machine starts running off the
battery even though I think it’s still
plugged in, and unfortunately I usual-
ly don’t notice until I start getting low-
battery warnings. I therefore decided
to write an application to pop a noti-
fication window onto the screen if the
machine switched to battery power.

Having no desire to implement this
entire application in C++, C, or Objec-
tive-C, I decided to write it in Ruby
and use SWIG to make the framework
functions available at the Ruby level.

The portion of the IOKit framework
that I needed had only three C func-
tions, so I first tried to get SWIG to
simply process the entire C header file
that declared those functions. Unfor-
tunately, the SWIG parser choked on a
fairly straightforward typedef for a
function pointer, so I then tried to
explicitly export the three functions.
That appeared to work, except that

once I tried to use the functions from
Ruby, I realized that the function input
and return values were opaque C data
types that could be accessed only via
other C functions. At that point, I had
two choices:

• I could use SWIG to also export
the data-manipulation and access
functions necessary to handle the
opaque data types. The problem
with this approach is that the gran-
ularity of the exposed functions did-
n’t fit well with the Ruby language.
Ruby is strongly object-oriented, but
by themselves, these functions
didn’t resemble natural Ruby class-
es or objects. Furthermore, using the
functions properly requires explicit
memory-management calls, which
are, of course, anathema to dynam-
ic language users.

• I could try to use SWIG’s typemap
facility to effectively inject hand-
written code snippets into the gen-
erated code to map between the
framework types and Ruby types.
Unfortunately, the conversions that
were possible with typemaps didn’t

seem suitable for solving this par-
ticular problem.

Even if I could’ve used typemaps, I
would’ve had to write custom glue
code, so in the end I chose to avoid
SWIG altogether and write my own
Ruby glue code in C.

I also tried SWIG for my middle-
ware project, which involves a much
larger C++ framework, and there too, I
encountered similar problems. In that
case, I again entirely avoided SWIG by
writing my own glue code instead. It
seems SWIG would work well only if
the underlying code happened to fit
into the dynamic language’s style,
which I expect would be uncommon.
If you try SWIG, perhaps you’ll have
better luck than I did, but overall, I rec-
ommend designing and implementing
your own glue code instead.

Writing Extensions
Fortunately, writing glue code or
extensions in C++ or C for Ruby isn’t
that difficult. The hardest part is find-
ing detailed descriptions of the Ruby C
API functions that you’ll need to
invoke from within your extension.
Programming Ruby,3 a popular book
informally called “the pickaxe” because
of its cover art, documents many of the
extension API functions, as well as the
general approach to writing Ruby
extensions in C. If you intend to write
your own extensions, I recommend
keeping a copy of this book handy.

Let’s assume you’re writing an
extension to let Ruby applications
directly access your C++ or C middle-
ware libraries. Many of the modules
that make up the installed Ruby pack-
age are written not in Ruby but in C,
as they often have to access underly-
ing operating system facilities. Your
middleware extension will provide a
new Ruby module that wraps the mid-
dleware functionality — just as the
aforementioned Ruby modules wrap
operating system functionality. With-
in your Ruby applications, you’ll use
your middleware module the same as

86 SEPTEMBER • OCTOBER 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

The resulting productivity gains that Ruby
can offer your integration projects are well
worth the effort.

you’d use any other Ruby module,
regardless of whether it’s written in
Ruby, C, or some other language. Even
if the pickaxe doesn’t document a par-
ticular Ruby API function you need,
your extension module will necessari-
ly use many of the same functions that
some of the installed Ruby modules
use, so you can also use the Ruby
source code itself to figure out what
any particular function does.

The Ruby mkmfmodule makes build-
ing an extension quite easy. You simply
create a Ruby file named extconf.rb
with the following contents:

require ‘mkmf’
create_makefile(‘myextension’)

where the myextension string refers
to the name of the Ruby module you
wish to produce. You then execute the
following command:

ruby extconf.rb

to create a Makefile. You can then
build your extension by simply run-
ning “make.” You can add quite a few
optional directives to your extconf.
rb file to customize the build — to set
include paths, for example, or to ver-
ify the existence of certain libraries
or functions. (See the mkmf module
documentation or the pickaxe for
more details.)

Executing extconf.rb builds all
C++ and C source files found in the
current working directory into the
Makefile. Running “make” then creates
a shared library or dynamically linked
library (DLL) that Ruby loads into your
application when you require the
module. For a module named my
extension, Ruby expects to find a C
function named Init_myextension in
the shared library. Upon loading the
shared library, Ruby invokes this func-
tion to initialize the extension. Within
this function, you call the necessary
Ruby API functions to set up the Ruby
modules, classes, and functions that
your extension provides.

The hard part, of course, is design-
ing the functionality to export to the
Ruby layer and writing the code to
implement it. Because of the imped-
ance mismatch issues I described ear-
lier, I recommend that you actually
design what you want to export to the
Ruby layer, rather than just relying on
mechanical code generation to do it
for you. Returning to my Mac IOKit
framework example, rather than
blindly exporting the C functions I
needed to access my laptop’s AC
power and battery information, along
with the various data-type support
functions they in turn require, I chose
to write one C function to wrap them.
Making this the only function avail-
able at the Ruby layer kept many
unnecessary low-level details out of
my Ruby code.

For my Ruby/C++ middleware-
integration project, I’m employing a
multilayered approach in which Ruby
applications use a module written in
Ruby. This module in turn wraps a mod-
ule written in C, which directly access-
es my middleware system. This layered
approach offers several benefits:

• The application layer resides at a
Ruby-to-Ruby, rather than a Ruby-
to-C, boundary. This simplifies the
application-interface development,
as I can implement much of it in
Ruby, which is much easier to work
with than C.

• The Ruby module encapsulates the
Ruby-to-C boundary, thus hiding it
from direct application access. This
lets me move functionality across
that boundary (from C to Ruby or
vice versa) without affecting the
application interface or breaking
existing applications.

• Because the Ruby-to-C boundary is
hidden, the C code needn’t com-
pletely solve the impedance-
mismatch problem on its own.
Instead, part of the impedance mis-
match can be solved in the C layer
and part of it in the Ruby module.
The Ruby module can contain non-

idiomatic code if necessary to deal
with the C layer without adversely
affecting Ruby applications.

SOA developers might notice that this
design process exactly matches what’s
required for making the functionality
for a particular service available to
applications in a SOA network. Trying
to create services by directly exporting
objects from the underlying technolo-
gy is normally a bad choice because it
lets too many implementation details
show through, and forces them onto
service consumer applications. There’s
no getting around the fact that SOA
developers must engage in proper ser-
vice design, considering issues such as
encapsulation, technology boundaries,
coupling, and cohesion.4

I n all, writing Ruby extensions for
middleware integration is relatively

straightforward. The idea can seem
daunting at first, but between the pick-
axe, online documentation and exam-
ples, Ruby community lists such as the
comp.lang.ruby Usenet group, and
the Ruby source code itself, it doesn’t
take long to get up to speed. The
resulting productivity gains that Ruby
can offer your integration projects are
well worth the effort.

References

1. M. Schmidt, Enterprise Integration with

Ruby, Pragmatic Bookshelf, 2006.

2. S. Vinoski, “RPC Under Fire,” IEEE Internet

Computing, vol. 9, no. 5, 2005, pp. 93–95.

3. D. Thomas, Programming Ruby, second ed.,

Pragmatic Bookshelf, 2005.

4. S. Vinoski, “Old Measures for New Services,”

IEEE Internet Computing, vol. 9, no. 6, 2005,

pp. 72–74.

Steve Vinoski is chief engineer for IONA Tech-

nologies. He’s been involved in middleware

for more than 17 years. Vinoski has helped

develop middleware standards for the Object

Management Group (OMG) and the World

Wide Web Consortium (W3C). Contact him

at vinoski@ieee.org.

IEEE INTERNET COMPUTING www.computer.org/internet/ SEPTEMBER • OCTOBER 2006 87

Ruby Extensions

