Reliability with Erlang

Steve Vinoski ¢ Verivue

features of Erlang, a programming language

created at Ericsson more than 20 years ago for
implementing telecommunications systems with
stringent reliability, distribution, and uptime
requirements. I showed two different Erlang imple-
mentations of a function for raising a number to
a power — one recursive and one based on poten-
tially thousands of Erlang processes, which are
akin to user-space threads. Users of popular lan-
guages such as Java or C++, in which threads are
on the heavy side because they're tied to the
underlying operating system kernel, are typically
surprised by Erlang’s capacity to rapidly spawn so
many lightweight processes.

As we’ll see in this column, Erlang’s concur-
rency primitives provide more than just a fast way
to create threads. They also enable parts of an
application to monitor other parts — even if they're
running on separate hosts across the network —
and restart those other parts should they fail.
Erlang’s libraries and frameworks take advantage
of these capabilities to let developers build systems
with extreme availability and reliability.

I n the last issue, I discussed the concurrency

Hang On

Before moving on to explore more of Erlang,
let’s reexamine one of the examples I used last
time. Kenny MacDermid of KMD Consulting
emailed me to point out that making my recur-
sive pow/2 function tail recursive would improve
its performance. A tail-recursive function sim-
ply calls itself at the very end, or tail, of its func-
tion body, thus allowing the interpreter or virtual
machine underneath to optimize away stack
growth and other overhead encountered with
normal function calls. MacDermid’s version of
pow/2 uses an accumulator parameter to avoid
tying the multiplication to the recursive call, as
my original example did:

NOVEMBER e DECEMBER 2007

1089-7801/07/$25.00 © 2007 IEEE

Toward Integration

-module (pow) .
-export ([pow/2]).

pow(N, M) -> pow(N, M, 1).

pow(_, 0, Acc) -> Acc;
pow(N, M, Acc) -> pow(N, M-1, Acc*N).

Here, pow/2 (the first version of pow shown, with
two arguments) just calls the second form of
pow/3 and passes 1 for the initial value of accu-
mulator Acc. The pow/3 function accumulates the
answer in Acc, continually multiplying the accu-
mulator by N to obtain the next accumulator value
to pass to the next recursion. Finally, the exponent
argument M reaches zero, matching the first form
of pow/3, which simply returns the accumulator’s
value as the final answer.

This might seem an inconsequential difference,
but it’s definitely not. I previously found that cal-
culating 50'°9° or greater using recursion was
slower than my multiprocess pow/2 function. The
multiprocess version uses message passing among
exponent+1 Erlang processes rather than recursion
to perform the same calculation. MacDermid’s ver-
sion, however, outperforms the multiprocess ver-
sion up to about 50°%%%9 above which the
multiprocess approach still runs faster — at least
on my MacBook Pro.

His version obviously changes my detailed
results, and I thank him for reminding me of the
performance benefits of correctly using tail recur-
sion. Fortunately, though, these results don’t
change the overall idea behind my original exam-
ples: process creation and interprocess communi-
cation in Erlang are far faster and cheaper than the
multithreading approaches used with popular
imperative languages such as Java and C++. As |
mentioned earlier, the fact that Erlang processes
are so inexpensive to create and destroy is critical

Published by the IEEE Computer Society

Toward Integration

to its support of highly reliable, long-
running systems.

Reliability
Erlang was born of the need to create
highly reliable telecommunications
systems, for which the maximum
allowable downtime — often mandat-
ed by law — typically amounts to just a
few minutes per year, including the
time required for upgrades. Obviously,
the typical approach to fixing bugs or
adding enhancements by taking the
system offline, reinstalling it, and
restarting it with a new version of soft-
ware simply doesn’t cut it in such
environments. Unplanned outages due
to faults and crashes can use all allow-
able downtime in one shot, potentially
even resulting in governmental fines
due to customers losing their service.

Given that middleware and enter-
prise-integration deployments often
serve critical data for enterprises or
help provide the back end for their
public Web presence, reliability and
availability for these systems can be
quite important as well, though not to
the same degree as in telecommunica-
tions environments. For example, very
large enterprises often have multiple
data centers around the globe to help
maximize reliability and uptime. Max-
imum annual downtime for enterprise
services is typically measured in hours
or even days rather than mere minutes
or seconds, but no one who owns or
maintains such systems would com-
plain if their reliability and availabili-
ty could approach that of critical
phone systems, as long as the costs for
achieving it were reasonable.

Erlang has several important
qualities that help address reliability
concerns:

e Fast, inexpensive process creation
and tear-down. As my September/
October column showed, Erlang
can create and destroy thousands
of processes in the blink of an eye.
When they’re this cheap, launching

80

many short-lived processes that
carry out relatively small tasks and
then go away is easy. Their brief
existence means that such process-
es don’t build up error-prone state
or needlessly tie up more and more
system resources over time. Should
any processes crash or die, we can
easily and quickly replace them
with new ones.

e [Linkage between processes. When
an Erlang process spawns another
process, it can ensure that links are
established to immediately notify
the spawning process when action
is needed if the spawned process
exits unexpectedly.

e Transparent distribution. Because
of problems such as latency and
disruption due to unexpected net-
work partitioning, distribution
can never be fully transparent,
but Erlang’s distribution capabil-
ities get pretty close. Primarily,
this is because the language
included them in the design from
the start, rather than as a bolt-on
afterthought. Erlang’s process-
spawning capability makes creat-
ing processes on other hosts across
the network just as easy as creating
them locally.

e [Live upgrade capabilities. Erlang
supports mechanisms that let sys-
tem operators and maintenance
personnel load modules into run-
ning systems to replace modules
that are currently in use.

Layered on top of the Erlang language
is a framework called the Open Tele-
com Platform (OTP), which uses these
features to help enable reliable sys-
tems. Despite the word “telecom” in its
name, OTP is a general-purpose frame-
work that’s useful for applications in a
variety of domains.

I want to make it clear that Erlang
and OTP aren’t magical — they won’t
automatically make your software
extremely reliable. Creating reliable
systems with Erlang/OTP still requires

www.computer.org/internet/

knowledge, experience, solid code,
thorough testing, and general atten-
tion to detail. Nevertheless, because
the language was designed with relia-
bility as a foremost concern, the com-
bination of Erlang and OTP definitely
has advantages over other common
languages when it comes to reliable
systems.

Supervisor Trees

Last time, we saw how easy it is to
create a new process in Erlang: you
call spawn/1, passing in the function
that the new process should run. Call-
ing spawn/1 makes the new process
independent of the process that cre-
ates it. If the new process dies unex-
pectedly, for example, the creating
process receives no notification of the
event. However, Erlang also provides
the spawn_1link/1 function, which
“links” the new process to the creating
process such that, should the new
process die unexpectedly, the creating
process also dies.

Based on that description, spawn
_1ink/1’s behavior doesn’t seem all
that useful. When combined with
Erlang’s exit-signal trapping feature,
however, the result is a powerful mon-
itoring and restart mechanism. The fol-
lowing line of code enables exit signal

trapping:
process_flag(trap_exit, true).

In Erlang terms, a process that
enables exit-signal trapping becomes
a system process. Enabling exit-
signal trapping before invoking
spawn_link/1 means that, rather
than crashing if a new process crash-
es, the system process receives a mes-
sage describing the defunct process’s
exit status. Depending on the reason
for the process’s death, the system
process might take different actions,
such as logging an error message,
sending an event message to another
process, or starting a new process to
replace the one that died.

IEEE INTERNET COMPUTING

By using process-linking capabili-
ty, developers can design applications
so that supervisor processes monitor all
the important processes — those that do
the actual work. OTP directly supports
the creation of supervisor trees — hier-
archies of supervisor and worker pro-
cesses — via its supervisor module, and
OTP’s support for reliable applications
depends heavily on these trees.

When supervisor trees are com-
bined with Erlang’s ability to easily
spawn processes on other nodes with-
in a distributed system, the result is a
substantial yet straightforward foun-
dation for long-running, reliable,
fault-tolerant applications. The distri-
bution transparency of Erlang’s
process-spawning capabilities means
supervisors receive exit signals from
worker processes even if the workers
run across the network on different
hosts. By spreading processes across
nodes, your application keeps running
even if some of the machines crash or
shut down. And with appropriate net-
work redundancy in place between the
nodes, your application can continue
even if the network breaks.

Over the years, I've helped design
and build several distributed fail-over
and redundancy frameworks in C++
and Java, and I know from hard-won
experience that getting it right can be
extremely difficult and time-consum-
ing. Much of the difficulty stems
from the fact that in such frame-
works, the dependencies between the
foundation code and the application-
specific code are such that problems
in either area can bring the whole
system down. In other words, even if
you write a highly robust framework,
it can still be brought down by one
rogue piece of application code. Con-
versely, writing robust applications is
nearly impossible if the underlying
framework isn’t fully robust and reli-
able. Either way, this phenomenon is
due to the fact that the boundaries
between the application and the
framework in languages like Java

NOVEMBER e DECEMBER 2007

and C++ essentially disappear at run-
time, and one bad pointer, missed
exception, or deadlock or livelock
problem can hang or crash the whole
application. Erlang/OTP, on the other
hand, does an excellent job of sepa-
rating the framework from the appli-
cation. Together with supervisor
trees, this separation greatly reduces
the complexity inherent in reliable
distributed applications.

Live Upgrades

When a system’s availability is so
critical that taking it offline for fixes
and upgrades simply isn’t viable,
there aren’t many alternatives. Ulti-
mately, such systems require the abil-
ity to perform live upgrades, in which
the software is modified as the system
keeps running.

Note how redundancy can help
here: if the system is composed of
multiple replicas, then you first shift
any users or connections off each
replica and onto one of the others. You
then take the newly unloaded replica
offline, upgrade it, and bring it back
online. This straightforward approach
is not unlike what happens during
automatic fail-over, but it has some
things to watch out for. For example,
replicas typically talk to each other
continually to ensure consistency.
When you bring up a newly upgraded
replica, you have to ensure that it can
still correctly exchange messages with
the replicas that have yet to be
upgraded. This requires that you either
avoid changing your message struc-
tures as part of your upgrades or, more
likely, that you version your messages
properly. You also have to ensure that
taking replicas down doesn’t increase
the load on the remaining replicas so
much that they falter or fail.

OTP includes significant support
for in-service software upgrades. It
provides for loading revised modules
as well as adding and deleting modules
at runtime. It also provides versioning
support for applications to help ensure

Reliability with Erlang

that versions V and V+1 (or versions V
and V-1, depending on your perspec-
tive) can seamlessly and correctly
interact. Unfortunately, these features’
richness prevents me from fully
describing them in this column space,
but you can refer to the OTP design
principles documentation for more
information (www.erlang.org/doc/
design_principles/part_frame.html).

A s | hinted last time, the more I learn
about Erlang, the more I wish I'd
found out about it a decade ago. I've
spent much of my career devising
ways to support the development and
execution of concurrent, distributed,
fault-tolerant middleware and applica-
tions; having Erlang in my toolkit 10
to 15 years ago could have saved me
significant development time and pre-
vented numerous headaches. Many
frameworks claim to take all the worry
out of such applications and let the
developer focus only on the business
logic, but Erlang and its OTP frame-
work comes far closer to that ideal
than any other framework I've seen. It
handles the difficult parts of concur-
rency, distribution, and reliability with
relative ease.

If you develop enterprise-integra-
tion or middleware applications that
require high reliability, I'll offer the
same advice I gave last time: go get
yourself a copy of Joe Armstrong’s
book, Programming Erlang.' This book
is very readable and is suitable for
both beginners and experts alike. It
will open your eyes to a better way of
building reliable software. M

References
1. J. Armstrong, Programming Erlang: Soft-
ware for a Concurrent World, Pragmatic
Bookshelf, 2007.

Steve Vinoski is a member of the technical staff
at Verivue. He is a senior member of the
IEEE and a member of the ACM. Contact

him at vinoski@ieee.org.

81

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

