
Toward Integration

92 Published by the IEEE Computer Society 1089-7801/08/$25.00 © 2008 IEEE IEEE INTERNET COMPUTING

RPC and REST
Dilemma, Disruption, and Displacement

Steve Vinoski • Verivue

I n the previous four issues, I’ve explored
problems with the remote procedure call
(RPC) abstraction and explained how the

Representational State Transfer (REST) architec-
tural style is one alternative that can yield a su-
perior approach to building distributed systems.
Because RPC is inherently tied to programming
language abstractions, my May/June 2008 col-
umn also investigated multilingual program-
ming, in which developers choose languages
according to how well they actually fit the prob-
lem at hand, rather than the typical approach
of choosing a popular general-purpose language
and bending it to fit the problem. Choosing the
right language and teaming it with a network
programming style like REST can obviate the
need for problematic techniques like RPC, thus
letting developers build distributed systems
both conveniently and correctly.

Some readers agree with my conjectures and
conclusions in the past several columns, and oth-
ers vehemently oppose them. Although there’s
really nothing surprising about that, the forces
that lead different readers to agree or disagree
are quite interesting. To make sense of these
forces, we must try to understand how, when,
and why different customers adopt different
technologies, based on factors that can extend
well outside purely technical characteristics. We
must also understand how technologies evolve,
why certain approaches win out over others even
when they appear to be technically disadvan-
taged, and how we might be able to analyze and
even predict how new technologies will perform
in the marketplace. Armed with such knowledge
and understanding, each of us can even ana-
lyze our own tendencies and preferences when it
comes to adopting technologies — perhaps gain-
ing a better understanding of why certain ap-
proaches appeal to us more than others.

Innovation
Many are familiar with the popular book The
Innovator’s Dilemma,1 in which author Clay-
ton Christensen provides important insights
about the nature of innovation, technological
change, and how technology markets work. He
gained these insights by studying companies
from several disparate industries, including
hard-disk manufacturers, businesses involved
in making steel, and firms that create and sell
mechanical excavators.

With respect to innovation, Christensen ex-
plains that there are two kinds of technologies:

Sustaining technologies are essentially im-
provements to products or approaches that
already satisfy customers within a given mar-
ket. Christensen states that they “improve the
performance of established products, along the
dimensions of performance that mainstream
customers ... have historically valued.”
Disruptive technologies are promising ap-
proaches that users of the incumbent sustain-
ing technologies in a given market initially
perceive as being less capable. Those that are
successful eventually evolve to fulfill the
needs of customers within that market at a
lower cost than the sustaining technologies
can deliver — and often with greater capabil-
ity as well.

The dilemma to which Christensen’s book title
refers is that the steps that managers must take
to ensure their products’ success and growth in
the marketplace also make it extremely difficult
for them to respond to disruptive technological
changes that eventually push their products into
obsolescence. Consider how a successful product
generally evolves:

•

•

SEPTEMBER/OCTOBER 2008 93

RPC and REST

The product addresses the needs
of certain customers within a
market. The customers are rea-
sonably happy with the product,
but they feel that some added or
improved features and capabili-
ties would make it even better.
To keep the customers happy,
the product’s manager ensures
that the product is enhanced
with the requested additions and
improvements.
The additions and improvements
not only help make existing cus-
tomers happier but also help at-
tract new customers, for whom the
cycle begins all over at step 1.

These steps form a loop that re-
peats throughout a product’s life
cycle. Although customers have cer-
tainly viewed some product versions
and releases as poorer than their
predecessors — many feel that Win-
dows Vista falls squarely into this
category, for example — a competent
product manager would never inten-
tionally choose to release a product
version that doesn’t, at a minimum,
meet existing customers’ expecta-
tions and requirements. The reason,
of course, is that the product can’t
succeed without those customers.
In fact, to achieve the growth rates
that firms normally seek, products
must gradually move “up-market” to
be able to command premium prices
from the very best customers.

Overshooting Opens the Door
The dilemma presents itself because
existing customers want improve-
ments, not setbacks, but disruptive
technologies are initially unable to
meet those customers’ demands.
Product managers have little choice
but to avoid disruptive innovations
and move forward with sustaining
technologies to continually improve
their products to meet these custom-
ers’ demands; by doing so, they’re
more likely to be able to secure the
premium prices they seek. Yet, as

1.

2.

3.

Christensen so lucidly explains in
his follow-on book, Seeing What’s
Next,2 catering to higher-end cus-
tomers can lead to products that
overshoot a nontrivial segment of
other customers within that mar-
ket — those who don’t want to pay a
premium, especially for features and
capabilities they don’t need.

Managers of successful products
generally aren’t concerned about
this because they view such overshot
customers as undesirable compared
to their up-market clients. However,
this leaves the door open for disrup-
tive products to take root. Overshot
customers turn to the less expensive
and seemingly less capable disrup-
tive technology because it’s “good
enough” for them — the initial prob-

lems inherent in the newer product
simply don’t get in their way. This
allows the disruptive product to be-
gin the three-step cycle described
earlier, and its customers start to
drive it to improve. As the disrup-
tive product improves, it appeals
to more and more customers, thus
driving the incumbent product into
smaller market segments in which
it can still command the premiums
needed to maintain revenue and
profit. The manager of the incum-
bent product is therefore essentially
unable to respond to the disruption
because doing so would mean lower
margins, less profit, and unhappy
customers — a dilemma indeed.

Product-adoption rates also fig-
ure into the overall equation. As a
product matures and its adoption
rate increases, its market grows until

the product becomes mainstream and
then capable of demanding premiums
from the best customers. Eventually
and inevitably, however, the prod-
uct’s adoption rate starts to decrease,
thus beginning a downhill slide that
can ultimately end in obsolescence.
Graphing the adoption rate reveals
a bell curve that’s better known as
the “technology adoption life cycle”
made famous by Geoffrey Moore’s
book Crossing the Chasm.3 Depend-
ing on the market, these curves can
span anywhere from just a few years
to many decades; consider the long
life cycle of the land-line telephone,
for example.

The technology adoption life-
 cycle curve helps categorize customer
types. Those on the rising (left) side of

the curve are early adopters of tech-
nology who are willing to try some-
thing new and look past its perceived
initial shortcomings in the hope that it
will provide a competitive advantage.
The opposite customer type is found
on the descending (right) side of the
bell curve, where well-vetted, mature
products live until they become ob-
solete. These conservative customers
want nothing to do with new, un-
proven, risky, and potentially buggy
technologies and products. They want
something solid and well-proven, and
they typically complain loudly when
the odd problem crops up, no matter
how trivial. In the middle, we find the
average customers whose balanced
risk/reward ratio leads them to fa-
vor products and approaches that the
early adopters have already proven
to work reasonably well. The average

Not surprisingly, users who favor RPC
approaches view RESTful HTTP with suspicion,
just as Christensen’s theories and empirical
evidence predict they would.

Toward Integration

94 www.computer.org/internet/ IEEE INTERNET COMPUTING

customers seek competitive advan-
tage over more conservative adopters,
and — at a minimum — they want the
products and approaches they use to
help them stay even with other simi-
lar competitors without incurring too
much risk.

RPC Sustains, REST Disrupts
Applying Christensen’s insights about
innovation and technological change
to the approaches, products, and cus-
tomers in the enterprise integration
space can be illuminating. For ex-
ample, if we go back over the history
of RPC-oriented systems that I cov-
ered last time, we see the pattern of
sustaining innovations moving sys-
tems up-market. Early RPC systems
were indeed rudimentary. However,
they appealed to overshot custom-
ers — developers who didn’t have the
time, knowledge, or skills required
to employ the typical techniques for
creating networked applications of
the day, which generally involved
carefully hand-crafting custom net-
work protocols along with the cus-
tom code needed to drive them. Even
the earliest, buggiest RPC framework
of the time was good enough for the
small-scale systems of the day.

Soon, though, customers wanted
more, and the march of sustain-
ing innovations began: Sun RPC
and Apollo NCS, DCE, Corba, RMI,
J2EE, SOAP, and WS-*. These ap-
proaches are all relatively simi-
lar in form and function, but each
was perceived in the market largely
as an improvement over what had
come before it. Firms that created
products based on these technolo-
gies moved right along with each
change, building their next sus-
taining products on each as it ap-
peared. Frequently, “new” products
were simply adaptation layers for
existing products. Customers for
these products also tended to follow
along with these sustaining innova-
tions. From my own experience, for
example, customers using WS-* in

this decade were those using Corba
in the 1990s, and they refused to
even consider using WS-* until it
integrated relatively cleanly with
their Corba systems, like a good
sustaining innovation should.

RESTful HTTP, on the other hand,
has all the makings of a disruptive
technology to the RPC market. As
RPC systems moved up-market and
gained capabilities and features over
time to continue to satisfy the most
demanding customers, they overshot
more and more potential users who
shunned the complexity and cost
of such systems. In RESTful HTTP,
which was born in the adjacent mar-
ket of the World Wide Web and is a
sustaining technology there, these
overshot users are finding an ap-
proach that helps them build solu-
tions that are less expensive, simpler
to build, and easier to extend and
maintain than what RPC approaches
can offer. It’s precisely these quali-
ties that make RESTful HTTP a dis-
ruptive technology in this context.

Not surprisingly, however, us-
ers who favor RPC approaches view
RESTful HTTP with suspicion, just as
Christensen’s theories and empirical
evidence predict they would. Such us-
ers commonly raise arguments along
the lines that RESTful HTTP lacks tool-
ing and interface definition languag-
es, or that it works for human-driven
browser-based systems but is unsuit-
able for application-to-application
integration, and it can’t adequately
support distributed transactions. In
short, RESTful HTTP doesn’t yet ap-
pear to be “good enough” for them.

Grading on a Curve
The degree to which incumbent RPC
users view RESTful HTTP with skep-
ticism depends directly on how far
to the right they lie on the technol-
ogy-adoption life-cycle curve. In
fact, many technical arguments and
disagreements result not from purely
technological differences but from
the participants’ very different plac-

es in the technology-adoption life
cycle. With respect to the enterprise
integration space, REST proponents
tend to inhabit the early adopter
side of the curve, whereas RPC sup-
porters hail from the conservative
right side. It’s no surprise that the
RPC vs. REST argument never seems
to die down; the participants have
completely different risk–reward ra-
tios and value systems, and thus are
unable to find common ground. Of
course, within any such disagree-
ment, you’ll also find the “can’t we all
just get along” middle-ground folks
who point out that both approaches
have merits — they, of course, are the
pragmatic majority who populate the
middle of the bell curve.

Fight or Flight
Another hallmark of a disruptive tech-
nology is that as it becomes “good
enough” for more users within a
market, it gradually displaces the
incumbent sustaining technology,
thereby invoking “fight or flight”
reactions from those still using the
sustaining approaches. Such reac-
tions are evident in the consolidation
of vendors in the SOA/WS-* market,
such as Oracle’s acquisition of BEA
and Progress Software’s purchase of
IONA Technologies, and in the fact
that some WS-* frameworks and
toolkits have incorporated RESTful
HTTP into parts of their systems.

For example, WSO2 uses Atom4
and AtomPub5 (both built on REST-
ful HTTP) within its registry product
(www.wso2.com/products/registry/),
which is part of a set of open source
products based on SOA and WS-*.
Somewhat ironically, the registry
uses a RESTful approach to handle
the publication and lookup of meta-
data for non-RESTful RPC-oriented
Web services. Christensen refers
to this approach as “cramming,” in
which firms try to capitalize on dis-
ruptive technologies by incorporat-
ing them into sustaining products;
it’s not an approach he recommends

 SEPTEMBER/OCTOBER 2008 95

RPC and REST

because “it takes an innovation from
a circumstance in which its unique
features are valuable to a circum-
stance in which its unique features
are a liability.”2 In this case, the
benefi ts of REST are hidden behind
an RPC-oriented API for access-
ing the registry, and those benefi ts
disappear completely as soon as an
application uses the registry to fi nd
a non-RESTful service and starts to
use it. WSO2’s strategy might also be
risky because it could drive custom-
ers away from the company’s other
non-RESTful products. It’s not hard
to imagine registry users fi nding the
approach appealing and realizing
that they can use similar techniques
to gradually rid themselves of their
own complicated, expensive, and
brittle WS-* implementations in fa-
vor of RESTful HTTP Web services.

It’s also interesting to think about
how new RPC systems such as Face-
book’s Thrift, Google’s Protocol Buf-
fers, and Cisco’s Etch fi t into the
picture. From the enterprise RPC mar-
ket perspective, these are purely sus-
taining innovations, and so they’re
quite unlikely to make inroads with
existing customers who view them
as inferior to existing products and
systems they already use. However,
these systems might well take root by
targeting non-users of RPC technolo-
gy in adjacent markets. For example,
given Cisco’s typical target market,
Etch might take root in the embed-
ded networking device space, which
is a very conservative market that
has started to trust RPC only within
the past few years. Similarly, Thrift
and Protocol Buffers might fi nd us-
ers among developers who build the
back ends of Web-based systems. De-
velopers in this space, who tend to
worry quite a bit about performance
and scalability, are generally loathe
to buy into the complexity and run-
time overhead of WS-* approaches,
but they’ll gladly snap up a light-
weight framework from the likes of
Google and Facebook, who both make

it quite clear that they use their re-
spective frameworks them selves with
great success.

W hether RESTful HTTP will con-
tinue to displace RPC-oriented

systems within the enterprise isn’t
ultimately just a matter of whether
one approach is technically “bet-
ter” than the other. The technology-
 adoption life cycle clearly indicates
that such evaluations are relative.
Technology choice is never black-
and-white, and in the big picture, the
time we spend arguing for one tech-
nology over another based on pure
technical merit is, frankly, largely
wasted. It ultimately comes down to
cost — if RESTful HTTP can indeed
yield “good enough” integration so-
lutions that cost less to develop and
maintain, it will slowly displace
heavier, more costly RPC-oriented
approaches in more and more en-
terprise scenarios. As Christensen,
Moore, and others have so clearly

explained for us, such changes are
inevitable, regardless of any tech-
nical arguments sustaining tech-
nology fans might try to muster to
prevent them.

References
C.M. Christensen, The Innovator’s Dilem-

ma, Harvard Business School Press, 1997.

C.M. Christensen, S.D. Anthony, and E.A.

Roth, Seeing What’s Next, Harvard Busi-

ness School Press, 2004.

G.A. Moore, Crossing the Chasm, Harper-

Collins, 1999.

M. Nottingham and R. Sayre, The Atom

Syndication Format, IETF RFC 4287, Dec.

2005; www.ietf.org/rfc/rfc4287.txt.

J. Gregorio and B. de hOra, The Atom

Publishing Protocol, IETF RFC 5023, Oct.

2007; www.ietf.org/rfc/rfc5023.txt.

Steve Vinoski is a member of the technical

staff at Verivue in Westford, Mass. He is

a senior member of the IEEE and a mem-

ber of the ACM. You can read Vinoski’s

blog at http://steve.vinoski.net/blog/ and

reach him at vinoski@ieee.org.

1.

2.

3.

4.

5.

Learn about computing history
and the people who shaped it.

COMPUTING
THEN

http://computingnow.
computer.org/ct

