
Toward Integration

96 	 Published by the IEEE Computer Society	 1089-7801/08/$25.00 © 2008 IEEE� IEEE INTERNET COMPUTING

RESTful Web Services
Development Checklist
Steve Vinoski • Verivue

S ometimes, Representational State Trans-
fer (REST) architectural style proponents
describe it as being easy, but this in no

way implies that REST is trivial or simplistic,
nor does it mean that RESTful systems lack
sophistication. REST’s relative simplicity comes
from the fact that it not only clearly defines its
trade-offs and constraints but also distinctly
separates concerns, such as resource identifi-
cation, resource interfaces, and definitions for
interchanged data. This delineation makes it
relatively easy for developers designing and
building RESTful services to consider and track
important issues that can profoundly impact
system flexibility, scalability, and performance.
REST isn’t the answer to all distributed comput-
ing and integration problems by any stretch of
the imagination, but it can yield highly practi-
cal solutions to a variety of such problems, not
only on the Web but also within the enterprise.

Not everyone agrees that REST is easy, of
course. One frequently mentioned issue is a lack
of tools — specifically, those that fit within the
interactive development environments (IDEs)
that many enterprise developers use to help
them write and maintain their code. Given that
IDEs are helpful only because they automate ac-
tivities and approaches that developers have al-
ready manually proven to be worth automating,
this “lack of tooling” argument is somewhat off
the mark. With the right language-specific pat-
terns and idioms to follow, existing IDEs work
just fine for RESTful service development. For
example, it’s relatively easy for today’s IDEs to
incorporate the idioms and patterns from the
recently published Java API for RESTful Web
Services (JAX-RS) specification (www.jcp.org/
en/jsr/detail?id=311) for developing Java-based
RESTful Web services. This implies that what’s
been missing isn’t the tooling itself but the spe-
cific approaches for how to best develop RESTful

Web services in today’s popular programming
languages; thankfully, as JAX-RS shows, that
situation is quickly improving.

Unfortunately, tools can’t independently de-
sign and implement full systems for us. Whether
developers of RESTful HTTP-based services write
their code in IDEs or with simple text editors,
and regardless of which programming languages
they use, they must understand REST and HTTP
fundamentals to succeed. This column covers
the primary areas that developers must con-
tinually consider as they design and build such
services. Tools can certainly provide reminders
about these areas and help to track progress, but
ultimately, developers must understand the un-
derlying technical issues to be able to make suit-
able design and implementation choices.

Identifiers, Resources,
and Applications
RESTful service developers should focus on ap-
propriate resource naming and how servers dis-
patch requests to resource implementations. As
Wikipedia explains in its informative article,
“Resource (Web),” (see http://en.wikipedia.org/
wiki/Resource_(Web)), a resource is any entity
that can be identified or named (that article it-
self is, in fact, an example of such a resource).
Resources are named with URIs. When a request
for a given resource arrives, the recipient server
decides how the resource’s identifier is mapped
down to the actual computing entities that im-
plement the resource. Developers new to REST
or HTTP often believe that the “path” portion
of a URI corresponds to a file system artifact,
but this isn’t necessarily true, especially when
it comes to RESTful services, whose resources
tend to be dynamically computed. The flexibil-
ity and loose coupling this approach affords is
highly beneficial to both client and server, al-

continued on p. 94

Toward Integration

94 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

lowing their respective designs and
implementations to evolve in a com-
pletely independent manner.

One of REST’s most important
constraints is hypermedia as the en-
gine of application state (HATEOAS),
also known as the hypermedia con-
straint. The relationships between
resources and how the server makes
those relationships available to ap-
plications are at least as important to
REST developers as resource naming.
As each application uses one or more
resources, it maintains its own ses-
sion state with respect to those. Serv-
ers keep resource state, of course, but
avoiding the need to keep session or
application state on the server side
is a big scalability win. Hyperlinks
can represent relationships among
resources, and as the hypermedia
constraint indicates, servers drive
applications through viable business
logic states via these links.

As important as the hypermedia
constraint is, developers don’t seem
to adequately address it — mainly
because it’s not how they normally
write programs. In typical program-
ming, frameworks and libraries tend
to offer numerous method- or func-
tion-entry points, such that program-
mers rarely have to call methods or
functions to gain access to further
library or framework capabilities.
One way to force yourself to think
about the hypermedia constraint is
to let your service have only one URI
as an entry point — a single URI to
a single resource that you permit
client applications to be aware of a
priori. You then have no choice but
to consider what URIs a GET must
return on that single resource to let
client applications navigate to other
resources; from there, you have to
consider what URIs those resources
must offer, and so on. Far from a for-
eign approach, this is precisely the
method that most Web sites use to
direct interactive browsing from one
site page to the next.

Representations
and Media Types
RESTful Web service developers
must also pay attention to data ex-
change. The name “Representational
State Transfer” means just what it
says: RESTful clients and resources
transfer resource state representa-
tions to each other. The client and
server must agree on the formats of
such representations, of course, to
allow for meaningful exchange.

As I detailed in my March/April
2008 column, HTTP uses MIME media
types to identify data formats, which
means that developers must consider
the nature of their services and decide
what MIME types they support. Such
types are registered with the Internet
Assigned Numbers Authority (IANA;
www.iana.org/assignments/media
-types), so their definitions are avail-
able globally. Developers often turn
to general data-definition languages
for their services, such as XML or
JavaScript Object Notation (JSON;
www.json.org).

HTTP supports content negotia
tion (conneg) between clients and
services. A client can set the Accept
header in a request to a list of accept-
able MIME types to tell the server
what formats it’s willing to receive. It
can also augment the list with qual-
ity (q) parameters to indicate prefer-
ences. For example, a browser might
send an Accept header declaring its
preference for XHTML, HTML, and
image types, in that order, followed by
a wildcard indicator with a low q pa-
rameter to indicate that it will accept
anything else as well. Noninteractive
programmatic clients, however, tend
to prefer a much more limited set of
media types — often, just one. When
a server returns a response, it sets the
Content-type header to indicate the
type of representation it’s returning.
To determine the client’s preferred
content type for a given request,
servers must be capable of parsing
Accept headers using techniques
such as those embodied in the open

source mimeparse module (http://
code.google.com/p/mimeparse/).

Service developers must choose
MIME types that work well for their
resources and clients. To support the
hypermedia constraint, resource rep-
resentations should contain hyper-
links to related resources wherever
it makes sense to do so. Service de-
velopers must also ensure that their
service implementations return HTTP
status code 406, which means “not ac-
ceptable,” whenever a client requests
an unsupported MIME type. Be care-
ful with services that need to support
browser access as well as noninterac-
tive client access because at least one
browser (Microsoft’s Internet Explor-
er) is notorious for sending Accept
headers that are essentially useless for
determining which MIME type would
be best to return. For such cases, you
can work around the uninformative
Accept header by checking the User-
Agent header to see if the client is the
offending browser.

Methods
HTTP provides four basic operations:
GET, PUT, POST, and DELETE. Devel-
opers must consider each method’s
expected semantics to decide which
methods are suitable for each re-
source. GET, PUT, and DELETE, for
example, must be idempotent, and
GET must be safe for clients to call
repeatedly because all it does is re-
turn a representation of a resource.
The PUT method lets a client replace
a resource state with a new state,
whereas clients use DELETE to re-
move resources. Both obviously have
side effects, but both are idempotent
because calling them repeatedly
has the same effect as calling them
once. POST can be made to perform
virtually any action, but in RESTful
systems, it’s normally used to create
or extend resources, and so it isn’t
expected to be idempotent or free of
side effects.

A common pattern that relies on
POST, for example, is adding an item

continued from p. 96

NOVEMBER/DECEMBER 2008� 95

RESTful Web Services

to a collection. The client invokes
POST on a collection resource, pass-
ing along details for the new item in
the message body. Assuming those
details are OK, the collection re-
source creates a new item resource
and returns its URI in the response’s
Location header along with status
code 201, which means “created.”

Status codes are quite important
as well. For each method on each re-
source, developers must choose which
HTTP status codes to return, and un-
der what circumstances. The HTTP
protocol specification (RFC 2616;
www.w3.org/Protocols/rfc2616/rfc
2616.html) is clear regarding the
meaning of each status code, and cli-
ents expect service developers to ad-
here to and follow those definitions.

However, not all resources sup-
port all methods. To determine which
ones a given resource can handle, a
client can invoke another method
called OPTIONS (assuming the re-
source developer has chosen to sup-
port it) to ask the resource directly.
The response will normally contain
an Allow header that lists meth-
ods the resource supports. Should
a resource receive a request for a
method it doesn’t support, it should
return status code 405, which means
“method not allowed.”

Service developers often find cre-
ative ways to break expected HTTP
method semantics. For example, they
might implement GET to have un-
wanted side effects, such as creat-
ing or deleting resources. Of course,
developers learn to avoid this when
they find their services leaking sig-
nificant memory as new resources
are created on each GET, or they find
that their resources are deleted when
Web crawlers hit their service URIs.
Another frequent blunder is to put a
non-idempotent verb, such as “delete-
Page,” into a URI such that accessing
it — presumably with a GET — causes
the server to perform that action. URIs
are names, which are nouns, not verbs.
If you think you need to stick a verb

for a new method into a URI, chances
are quite good that you don’t fully
understand HTTP’s methods, their ex-
pected semantics, or how servers and
resources can implement them.

Conditional GET
HTTP can be reasonably efficient on
a global networking scale because it
provides significant support for in-
termediation and caching. Servers
control whether their responses can
be cached and, if so, for how long.
For further information, refer to the
excellent and thorough “Caching Tu-
torial for Web Authors and Webmas-
ters” by Yahoo’s Mark Nottingham
(www.mnot.net/cache_docs/). But even
for small-scale systems without any
caching intermediaries, servers and
clients can still include certain data
in headers in their responses and re-
quests that can significantly reduce
the amount of data they exchange
and, in some cases, even eliminate it.

Because conditional GET is rela-
tively straightforward, service de-
velopers should always strive to
support it. One way to do so is to
return the date and time of the most
recent change to the resource in the
Last-modified header when a cli-
ent requests a GET of that resource.
The next time that client wants to
retrieve that same resource, it can
take the Last-modified header’s
value it received last time and send
it back to the server in the new re-
quest’s If-modified-since header.
The server then uses this header
to see if the resource has changed
since the date and time specified by
the client; if not, the server returns
status code 304, which means “not
modified,” along with an empty re-
ply body signifying that the client
can continue to use the resource
representation it originally received.
This helps overall efficiency for
both the server and client by avoid-
ing sending and receiving the same
message bodies repeatedly.

Developers can also support con-

ditional GET through the entity tags
mechanism. An entity tag uses a re-
source hash to detect changes rather
than relying on date and time, because
the latter leaves open a one-second
window in which changes can’t be
detected. A server returns the hash
value as a string in the Etag header,
and clients can send the hash string
back on subsequent requests in the
If-none-match header; if the server
rehashes the resource and finds that
the resulting value matches what the
client sent, it returns status code 304
with an empty message body, as it
does for the Last-modified case.

Developers must make sure that
entity tags’ computing cost is much
less than the cost of acquiring and
returning the whole resource rep-
resentation. If the resource repre-
sentation is expensive to compute
— requiring multiple database que-
ries, for instance — try to make the
entity tag depend on a resource’s less
expensive subset that’s still reliable
enough to pick up any changes to it.

I n all, REST and HTTP are quite rich.
By focusing on the areas I’ve dis-

cussed, RESTful Web service devel-
opers can have well-behaved service
implementations up and running in
short order. For further information,
please see Leonard Richardson’s and
Sam Ruby’s excellent RESTful Web
Services book.1�

Acknowledgments
Thanks to Stefan Tilkov of innoQ for his ex-

cellent feedback on a draft of this column.

Reference
L. Richardson and S. Ruby. RESTful Web

Services, O’Reilly Media, 2007.

Steve Vinoski is a member of the technical

staff at Verivue. He is a senior member

of the IEEE and a member of the ACM.

You can read Steve’s blog at http://steve.

vinoski.net/blog/ and reach him at

vinoski@ieee.org.

1.

