
Toward Integration

82 Published by the IEEE Computer Society 1089-7801/07/$25.00 © 2007 IEEE IEEE INTERNET COMPUTING

REST Eye for the SOA Guy

Y ou see the glaring headlines all the time in
trade magazines, blogs, and mailing-list post-
ings: “REST vs. SOA,” “REST vs. SOAP,” “REST

vs. WS-*.” These squabbles can become as strident
as religious debates, but I usually find myself tak-
ing the middle ground. Several of my 2005
columns, for example, discussed service-oriented
architecture (SOA) and dynamic languages, which
are often on opposite sides of the fence.

Yet, I’m torn in the Representational State
Transfer (REST) and SOA debate — REST is
extremely appealing, but my technical background
is firmly rooted in the SOA camp. In this column, I
try to explain REST from the viewpoint of some-
one steeped in SOA, with the intention of helping
SOA people understand the value the REST camp
so rightfully touts.

SOA Basics
Although the main idea behind SOA is valuable,
it’s hardly Earth-shattering: abstracting your busi-
ness services and separating them from your appli-
cations can yield an overall system that’s easier to
build, maintain, and extend. This might seem like
basic software engineering, but real-world IT sys-
tems have countless business rules and assump-
tions inappropriately buried inside countless
monolithic applications. SOA’s goal is to avoid
such monoliths by separating business rules and
policies into distributed services that applications
can share as needed.

SOA encourages several critical development
practices, but the most important ones are estab-
lishing and adhering to service contracts and split-
ting interface from implementation. A service
contract tells its consumers what the service
expects as input data when invoked and what form
of data it returns. Splitting interface from imple-
mentation means that the service’s consumers
know only the contract and remain blissfully igno-

rant of its implementation details (such as the pro-
gramming language in which it’s written, the oper-
ating system on which it runs, or the service
platform within which it executes).

The typical approach to implementing SOA
involves more than just services and the applica-
tions that use them, though. SOA implementations
usually depend on several facilities:

• service registries, in which services advertise
their locations and capabilities, and where con-
suming applications go to find those services;

• service repositories, in which developers store
metadata, such as contract descriptions and
policies, for use at both service design and
deployment times;

• service definition languages, which developers
use to define service contracts; and

• service platforms, which provide design-time
and runtime support for service creation,
deployment, and execution.

These descriptions don’t mention specific tech-
nologies because SOA is applicable to several,
despite the fact that many people incorrectly asso-
ciate it exclusively with SOAP, WSDL, and Web
services. Developers have implemented SOA for
many years, using technologies such as the Dis-
tributed Computing Environment (DCE), Corba,
and Java Enterprise Edition (Java EE).

REST Overview
REST is an architectural style that Roy T. Fielding,
now chief scientist at Day Software, first defined in
his doctoral thesis.1 Fielding developed REST in
1994, during a time when he also helped develop
HTTP 1.0, was the primary architect of HTTP 1.1,
and authored the uniform resource identifier (URI)
generic syntax. He saw REST as a way to help com-
municate the basic concepts underlying the Web.

Steve Vinoski • IONA Technologies



REST specifies several architectural
constraints intended to enhance per-
formance, scalability, and resource
abstraction within distributed hyper-
media systems. One of these is the uni-
form interface constraint, which (as its
name implies) means that all resources
present the same interface to clients.
Another is statelessness, in which
servers keep no state on the client’s
behalf, so all requests must carry the
pertinent session-oriented information.
Caching is yet another REST architec-
tural constraint that can help perform-
ance and scalability by letting clients or
intermediaries cache responses that
servers mark as cacheable. The fact that
the Web works as well as it does is
proof of these constraints’ effectiveness.

Resources and representations are
also key parts of REST — its name is
even based on the fact that resources
and clients exchange resource repre-
sentations as part of their interactions.
A concrete example is when a Web
browser sends an HTTP GET request to
a Web site for a given resource. The
response is typically an HTML repre-
sentation of the resource’s state, but
other representations are also possible,
such as plaintext or XML. Resources
are named with unique identifiers that
clients use to interact with them — for
the Web, these identifiers are URIs.
Because REST targets distributed hyper-
media systems, representations also
normally contain identifiers for other
resources, allowing applications to use
them to navigate among related
resources. In HTML terms, such identi-
fiers are hyperlinks to related resources.

As doctoral theses go, Fielding’s is
remarkably readable. If you want to
understand the details and motivation
behind REST, download or view it at
www.ics.uci.edu/~fielding/pubs/
dissertation/top.htm. But if you’re
looking for a quicker REST informa-
tion fix, or want to know more about
how REST has evolved since Fielding
published his thesis, the RESTwiki
(http://rest.blueoxen.net/) is a good
source of relevant information.

Uniform Interfaces
and Scalability
SOA proponents regard interfaces and
contracts as being critical to service
definitions: different services have dif-
ferent interfaces — a normal and desir-
able characteristic of software systems,
whether they’re distributed or not. REST
proponents, on the other hand, stand by
the uniform interface constraint.

One area of agreement between the
SOA and REST camps is that loose
coupling is generally desirable. It lets
different parts of a distributed system
evolve at different rates, which both
camps agree is absolutely required as
system scale increases. Generally, each
service in a system has an interface or
contract not only for its operations but
also for the data exchanged as part of
operation invocations. A WSDL defi-
nition of a Web service, for example,
defines operations in terms of their
underlying input and output messages,
but it also defines the form of the data
that accompanies those messages. For
WSDL, data types are normally speci-
fied in XML Schema — similarly, Corba
services have both interface and data
types defined in IDL.

A significant advantage of the uni-
form interface constraint lies in the
area of scalability. For a client to cor-
rectly interact with a SOA service, it
must understand the specifics of both
that service’s interface contract and
data contract. But for a client to in-
voke a REST service, it must under-
stand only that service’s specific data
contract: the interface contract is uni-
form for all services. I can’t overstate
this difference’s impact on large-scale
systems. Imagine, for example, that the
Web comprised millions of Web sites
and that each defined its own special
interface. To use your Web browser to
interact with a particular site, you’d
likely need to download or write a new
browser plug-in that understood that
site’s interface. Admittedly, I’ve exag-
gerated the problem to make its effect
clear, but there’s no question that the
uniform interface constraint can allow

for more highly scalable systems. It
removes the entire interface contract
term from the client–service interac-
tion equation.

Ironically, the fact that SOA pre-
scribes specific interface contracts
actually undermines its goal of split-
ting interface from implementation
because specific interfaces tend to
reveal more about underlying imple-
mentations than do generic interfaces.
Moreover, specific interfaces — by def-
inition — constrain their implementa-
tions because varying them often
requires interface changes. Mark Baker
of Coactus Consulting writes about this
phenomenon in a couple of online
articles (see www.infoq.com/articles/
separation-of-concerns and www.
coactus.com/blog/2005/11/on-interface
-and-implementation-and-reuse/).

Interestingly, some of the architects
and developers I know who work on
large SOA systems (such as those in
telecommunications and financial
enterprises) figured out the uniform
interface constraint on their own,
without ever hearing of REST. Unfor-
tunately, they did it the hard way, by
first developing and deploying service-
specific interfaces and then watching
what broke as their systems increased
in scale. From this, they learned two
lessons: first, that baking information
about a given interface into applica-
tions always requires expensive cus-
tom coding, and second, that once
knowledge of an interface is baked
into hundreds or thousands of clients,
changing or evolving the interface
becomes quite expensive, if not com-
pletely impractical. To minimize this
effect, they ended up writing general-
ized interfaces that they could apply to
diverse resources, which is essentially
what REST’s uniform interface con-
straint prescribes.

Data Variability
Of course, the data variability part of
the scalability equation (that different
services expect and deliver different
data formats) remains within REST,

JANUARY • FEBRUARY 2007 83

REST Eye



84 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

even if interface variability is elimi-
nated. Although data variability is
indeed a factor in both SOA and REST
systems, REST has an advantage here
as well.

SOA service definition languages
often bind data formats together with
interface contracts. In Corba IDL, for
example, you use the IDL to define
your data; with WSDL, developers
almost universally use XML Schema
for data description, even though
WSDL technically supports other ap-
proaches as well. This merging of
interface and data contracts is based
on decisions made decades ago about
what service-definition languages
should provide for applications, espe-
cially in terms of code generation.
Today, the SOA camp relies heavily on
code generation, tooling, and signifi-
cant platform and middleware support.

In REST, data formats are necessar-
ily orthogonal to interfaces, given the
uniform interface constraint. REST
therefore promotes the notion of self-
describing messages, in which repre-
sentation formats are based on
agreed-upon standards and are speci-
fied within the messages themselves.
Different messages can also specify dif-
ferent formats in HTTP content-type
and accept headers — the former indi-
cates the message’s data-payload for-
mat, whereas the latter specifies as part
of a request what data formats the
caller is prepared to receive in response.

REST’s handling of data formats
also helps with scalability. Allowing
services to handle multiple data for-
mats means clients and services can
use appropriate data types for differ-
ent types of data, such as images, text,
and spreadsheets. Such media types
are specific forms of REST’s general
notion of representation metadata. The
fact that such metadata accompanies
messages also means that clients can
request the data format they’d prefer
to receive. Furthermore, the clean sep-
aration between distribution infra-
structure and representation metadata
handling in REST means that develop-

ers can build REST-oriented systems
using an infrastructure that’s much
lighter than many SOA platforms.

Resource Naming
Although interface and data contracts
obviously vary significantly between
REST and SOA, each supports some
notion of named resources. REST treats
representations as the way for applica-
tions to navigate distributed hyperme-
dia systems; similarly, applications
normally access SOA services via some
sort of distributed network handle.
Consequently, the differences between
REST and SOA in the area of navigat-
ing named resources aren’t as great as
we might expect. Yet, as far as actual-
ly naming resources goes, REST
provides much more guidance and
consistency than SOA. One of REST’s
architectural constraints is that each
and every resource has a unique iden-
tifier. SOA, however, leaves service
naming and identification within a
particular system entirely up to that
system’s designer or implementer.

I think the main differences between
the REST and SOA camps come

down to their respective histories. Both
have roots in the distributed objects
movement, which decades ago began
replacing in-memory object messaging
with cross-network object messaging
in object-oriented applications. How-
ever, they’ve diverged in their primary
focuses. SOA often focuses on applica-
tion design and construction and is
only secondarily concerned with dis-
tribution. Look no further than the fact
that many modern SOA platforms
pride themselves on how easily they let
developers turn programming lan-
guage objects directly into distributed
services, regardless of their actual suit-
ability for distribution.

REST’s distributed objects heritage
is often overlooked, but Fielding noted
in his thesis that he originally consid-
ered calling REST the “HTTP object
model.” REST’s foremost concern,

unlike SOA, has always been distribu-
tion: it focuses primarily on ensuring
that distributed hypermedia systems
can scale and perform well, by explic-
itly constraining important aspects of
their architectures to handle issues
related to distribution and by separat-
ing critical orthogonal concerns.

Many SOA platforms focus too
heavily at the programming-language
level and not enough at the distribu-
tion level. We’ve known for years that
trying to add distribution after the fact
simply doesn’t work, but it seems that
each batch of SOA developers has to
relearn this lesson the hard way. Iron-
ically, the Web’s power and ubiquity
are making this lesson more difficult
because it’s simply too easy to improp-
erly tunnel inappropriate protocols
through HTTP.

Unfortunately, many SOA develop-
ers are far too quick to dismiss REST
because it doesn’t fit with their favorite
tools, because their favorite program-
ming language doesn’t directly support
it, or because they believe REST is just
HTTP. Even if you believe SOA is
exactly the right approach for the
applications you develop, truly under-
standing REST can help you build
more scalable and better performing
distributed systems.

Acknowledgments
Thanks to Mark Baker of Coactus Consulting and

Doug Lea of State University of New York,

Oswego, for their insightful reviews of the ini-

tial draft of this column.

Reference

1. R.T. Fielding, Architectural Styles and the

Design of Network-Based Software Archi-

tectures, doctoral dissertation, Dept. of

Computer Science, Univ. of California, Ir-

vine, 2000.

Steve Vinoski is chief engineer for IONA Tech-

nologies. He’s been involved in middleware

for more than 17 years. Vinoski has helped

develop middleware standards for the Object

Management Group (OMG) and the W3C.

Contact him at vinoski@ieee.org.


