
Toward Integration

Old Measures
for New Services

L ike fashion and music, computing styles
tend to come and go and then come back
again. I often think of this phenomenon as

being like a pendulum, continuously swinging
from one side to the other. For example, popular
user interface (UI) styles vary every few years.
“Rich client” UIs are currently all the rage, but a
few years ago, the “thin client” approach was
favored, and a few years from now you can be
sure it will be again. Mainframes ruled the roost
in the 1970s, but their popularity dwindled
through the 1980s as minicomputers, worksta-
tions, and personal computers appeared on the
scene. I recall lunch-table discussions around
1990 in which the popular stance was that the
mainframe was dead. Contrary to those opinions,
mainframes quietly rebounded throughout the
’90s, and today they still sell well.

Older computing styles can reappear for differ-
ent reasons. Sometimes advances in hardware,
programming languages, operating systems, or
middleware breath new life into techniques that
didn’t work so well in the past. In other cases,
nearly forgotten methods return to popularity
because the “not invented here” syndrome forces
a backlash against current approaches, or because
a lack of awareness that such approaches had been
tried in the past makes them seem fresh and new.
Sometimes, new approaches simply don’t work
out, forcing a return to approaches that previous-
ly worked. Of course, there are even cases where
once-popular tactics make comebacks because
they’re fundamentally good ideas.

Back to Services
Service-oriented architecture (SOA) is somewhat
overhyped at the moment, making it seem new
when it really isn’t. After all, popular RPC toolkits
from the late 1980s to early 1990s, such as Sun’s
Open Network Computing (ONC) and the Open

Software Foundation’s Distributed Computing
Environment (DCE), were oriented around services,
as were later distributed object systems such as
COM, Corba, and Enterprise Java Beans (EJB). It’s
enough to make you wonder if there are any new
techniques for designing good services, or whether
we’ve already encountered them all in previous
computing-style waves.

Preceding the object-oriented programming
wave was the structured programming approach.1,2

It began in the early 1970s with the hope of
turning the seemingly haphazard craft of pro-
gramming — with its spaghetti code and mischie-
vous GOTOs — into true engineering, with distinct
phases and repeatable processes. The end goal was,
of course, to produce higher-quality software.
Structured programming led first to structured
design and then to structured analysis, with levels
of abstraction continually rising along the way.
Structured techniques promoted various types of
diagramming to allow for true software engineer-
ing designs that were free of the “encumbrances”
of implementation details. Programmers first broke
problems down using stepwise refinement; once
all the steps were implemented, they could simply
be assembled to form the solution to the original
problem. Although far from perfect, structured
techniques taught us a great deal, both in terms of
what worked and what to avoid.

One of the most useful things that structured
techniques gave us was an approach for measur-
ing software quality based on the fundamental
concepts of coupling and cohesion. Coupling is a
measure of interdependencies between modules,
which should be minimized; cohesion, a quality
to be maximized, focuses on the relationships
between the activities performed by each module.
You might not hear much about these old mea-
sures anymore, but they’re still highly applicable
to today’s service-oriented systems.

72 NOVEMBER • DECEMBER 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

Steve Vinoski • IONA Technologies

Coupling
Given that coupling is something to be
minimized, quality systems tend to
exhibit “loose” rather than “tight” cou-
pling. Unfortunately, these measures
are too black-and-white. According to
Meilir Page-Jones’s 1988 Practical
Guide to Structured Systems Design,1

multiple forms of coupling exist along
the scale from loose to tight, or clear
to concealed.

• Data coupling occurs when mod-
ules pass data between each other,
such as when a variable is passed
as a parameter to a function call.
There’s nothing too unusual about
this form of coupling; although
you can go overboard with it (pass-
ing many parameters to a function,
for example), data coupling is gen-
erally preferable to the other forms
of coupling.

• Stamp coupling is like data cou-
pling but with composite parame-
ters. The difference is that the
composite structure’s fields are
passed somewhat invisibly, making
their relationship to the called
module less clear than with those
passed directly. Passing a whole
structure allows the called module
to manipulate all fields contained
therein, which can be undesirable
if the module really only needs
access to one or two fields.

• Control coupling occurs when one
module knows something about
and passes information that’s
intended to control the logic of
another. While it’s not unusual or
undesirable for a module to use its
parameters to make decisions about
its actions, it’s less than ideal when
this leads to decisions’ being split
across modules. Not only does such
an arrangement make it harder to
change the decisions, it also implies
reduced module cohesion as well.

These forms, which Page-Jones col-
lectively refers to as normal coupling,
are generally okay, except for the spe-

cific caveats I mentioned. Other forms,
however, are to be avoided:

• Common coupling occurs when two
modules share a common data
area, such as global variables. This
needs no explanation, as we all
know the evils of globals. Common
coupling might seem immaterial
when considered in the context of
today’s distributed services, but it
becomes very relevant when you
consider the resemblance to the
coupling that occurs when services
share directories, registries, or data-
bases. They’re not necessarily iden-
tical forms of coupling, because
directories, registries, and databas-
es are themselves services that
aren’t completely wide open like a

global variable. That said, it’s
sometimes tantalizingly easy to
create systems in which services
share data at will through common
registry entries or database tables,
which isn’t much better than using
global variables.

• Content coupling describes the sit-
uation in which one module direct-
ly refers to another’s innards. Like
global variables, this form was
originally applied only to functions
sharing address spaces. However,
its more modern form is generally
known as implementation coupling,
in which one module depends on
the implementation details of
another. This is arguably the worst
possible degree of coupling, given
that it potentially includes all the
other forms mentioned, and it
means that changes to one module
or service will almost certainly
require modifications to the other.

Another form of coupling that’s
not mentioned in structured program-
ming texts might be called interface
coupling. Highly relevant to distributed
objects and service-oriented systems,
this form refers to the degree to which
one module depends on another’s
interface. The main reason this never
came up with structured programming
techniques is that they equated “mod-
ule” with “function,” where a function
has only a single interface, which
means depending on it is a given if it’s
being invoked. However, interface
coupling becomes a much larger con-
cern when the term “module” is used
in its modern form, in which it’s
equivalent to an object or, bigger still,
a package or namespace. Objects and
packages generally offer multiple

methods, and it’s not unusual for code
using an object or package to depend
on many or all of its methods. Inter-
face coupling is synonymous with the
term “surface area,” which is an infor-
mal measure of how much of a given
interface the code using it depends on.

Another facet of interface coupling
relates to the number of interfaces that
a given module or application depends
on, and the distinctiveness or unique-
ness of each interface. For example, an
application built entirely around one
or two polymorphic interfaces exhibits
low interface coupling, regardless of
how many actual objects or services it
interacts with through them. An appli-
cation that depends on a wide variety
of unique interfaces, on the other
hand, is highly coupled.

Cohesion
Just as there are different forms of
coupling, there are different forms of

IEEE INTERNET COMPUTING www.computer.org/internet/ NOVEMBER • DECEMBER 2005 73

Old Measures

Although far from perfect, structured
techniques taught us a great deal, both in
terms of what worked and what to avoid.

cohesion. Page-Jones describes seven
different levels. Three of the forms
avoid creating forced or unnatural
relationships between a module’s
internal tasks or the data it uses:

• Functional cohesion occurs when a
module does only one thing. This
is the ultimate in module cohe-
siveness. Functionally cohesive
modules that also display low cou-
pling are typically highly reusable
because they are, by definition,
self-contained and largely inde-
pendent of any surrounding code.

• Sequential cohesion occurs when a
module carries out several tasks, and
the input of one task feeds into

another, perhaps modifying the data
as it passes through. A sequentially
cohesive module or service is often
a wrapper around other modules or
services, chaining them together to
perform a larger function. This, in
itself, isn’t necessarily undesirable
because good wrappers can hide
details, thereby reducing overall
coupling within applications.

• Communicational cohesion is when
a module carries out multiple oper-
ations based on the same input or
output data. Such cohesion often
results from the desire to operate
only once on a complex set of data,
calculating in one pass everything
that the rest of the application
might possibly want to retrieve or
derive from it. Unlike sequential
cohesion, task order is unimportant
in communicational cohesion.

In contrast to the “good” forms of
cohesion, Page-Jones identifies four
that are frowned upon:

• Procedural cohesion is similar to

sequential cohesion except that the
data feeding each of the tasks is
different. Such cohesion often
results from artificially grouping
activities of an application togeth-
er into catch-all functions in a mis-
guided attempt to reduce coupling.

• Temporal cohesion occurs when a
module’s tasks are related only by
the time they’re carried out. Such
modules cause maintenance prob-
lems if one of the tasks needs to be
performed at a different time.

• Logical cohesion is a condition in
which a module’s activities are
grouped together because they
appear to be able to share common
implementations. This results in a

strange or awkward interface for
the module, thereby punishing all
of its users, just to ease the imple-
menter’s job.

• Coincidental cohesion represents
the bottom of the cohesion barrel,
in which a module’s tasks are relat-
ed only by the fact that they reside
together in that module.

Just as with coupling, cohesion still
matters when applied to distributed
objects and services. For example, if
you grouped a bunch of methods in an
object only because they had similar
implementations, you would be guilty
of creating a logically cohesive object.

A s you (re)acquaint yourself with the
various forms of coupling and cohe-

sion, their applicability to today’s ser-
vice-oriented systems becomes clear.
For example, consider the seemingly
unending debate about all the object-
like Web services specifications, typi-
cally referred to as “WS-*,” versus the
Representational State Transfer (REST)

approach on which the World Wide
Web is built. If we analyze these
approaches from a coupling point of
view, we find that although both exhib-
it similar forms of data coupling, the
degree of interface coupling exhibited
by systems based on WS-* is much
higher than for REST systems. This is
because REST’s interfaces are uniform
and fixed, whereas WS-* interfaces are
ad hoc and variable. As another exam-
ple, creating understandable and main-
tainable Web services orchestrations
requires us to consider the cohesion of
both the services being orchestrated and
the resulting orchestrations themselves.
It would seem much too easy, for exam-
ple, to create orchestrations with proce-
dural cohesion, rather than applying the
extra analysis and design effort to cre-
ate sequentially or even functionally
cohesive service groupings.

Given that transitions to “new”
computing styles are often accompa-
nied by explicit disapproval of the out-
going style, it’s no surprise that today’s
focus on SOA has created a bit of a
backlash against distributed objects.
What’s unfortunate is that many of the
measures of quality for distributed
object systems apply equally well to
distributed services and SOA, so it’s a
shame that some feel compelled to
ignore them just to be trendy. But per-
haps it doesn’t matter, because we can
just go back to the days before objects,
dig up measures like coupling and
cohesion, and apply them all over
again — for the first time, of course.

References

1. M. Page-Jones, The Practical Guide to

Structured Systems Design, 2nd ed., Pren-

tice-Hall, 1988.

2. J. Martin and C. McClure, Structured Tech-

niques for Computing, Prentice-Hall, 1985.

Steve Vinoski is chief engineer for IONA Tech-

nologies. He’s been involved in middleware

for more than 17 years. Vinoski has helped

develop middleware standards for the Object

Management Group (OMG) and the W3C.

Contact him at vinoski@ieee.org.

74 NOVEMBER • DECEMBER 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

Just as with coupling,cohesion matters when
applied to distributed objects and services.

