
Toward Integration

96 	 Published by the IEEE Computer Society	 1089-7801/09/$25.00 © 2009 IEEE� IEEE INTERNET COMPUTING

T he arrival of a new year tends to enkin-
dle within many of us a hope that the 12
months to come will be better than the 12

that just ended. Born of this hope are our New
Year’s resolutions: vows to lose weight, exercise
more, stop smoking, or spend less time at the
office. Such resolutions are renowned for being
broken, of course, but individuals who actually
succeed at keeping theirs often end up finding
the betterment they seek.

What New Year’s resolutions might we make
to try to improve our lot in the areas of distrib-
uted systems and enterprise integration? Having
been involved in these areas for the past two de-
cades, I can assert with certainty that distributed
integration projects often encounter tremendous
difficulty. Although some of the pain is simply
inherent in the problem domain, some is unfor-
tunately the result of architects and developers
unwittingly making poor system choices. In this
column, I consider some high-level advice that
can help keep us on the integration straight and
narrow this year.

Know Thy Infrastructure
I hereby resolve to avoid believing that third-
party infrastructure can completely solve my
integration problems.

From 1991 until early 2007, I worked for two
different middleware infrastructure vendors in
roles such as architect and chief engineer, and
each role involved full-time, hands-on software
development. One thing I learned during that
time is that, from the vendor perspective, the
best customers were always those who behaved
more like partners or even fellow developers.
They didn’t just use the products, they effec-
tively helped build them. They were involved in
planning product features, and they helped en-
sure product quality by proactively participating
in alpha and beta product trials. We found that
such customers provided what you could describe

as tough love. Publicly, they’d praise our work
and willingly speak to other potential custom-
ers about how important our products were to
their operations. In private, however, they could
be tenacious taskmasters, demanding features or
capabilities that were sometimes extremely dif-
ficult to design or implement. Interestingly, we
could often set our products apart from the com-
petition by fulfilling those difficult demands.

These types of customers benefit greatly
from close involvement in the development of
the infrastructure products they use. In essence,
they get to play a nontrivial part in driving
the vendor’s in-house developers in a direction
likely to yield the infrastructure they need. This
lets them keep their own development efforts
focused on their own problem domains and yet
still be certain that their infrastructure will be-
have and perform the way they need it to.

Now consider the other extreme: uninvolved
customers. Their hope is that by using third-
party infrastructure, not only can they save
themselves the trouble of developing it, but they
can also avoid the need to really understand
it, much as many automobile drivers are bliss-
fully unaware of how their vehicles’ internals
work. Before acquiring the infrastructure soft-
ware, uninvolved customers might first run a
trial application to ensure that the software ap-
pears to work as they need it to. Assuming it
passes their acceptance test, they decide to use
the infrastructure code and expect it to behave
as advertised. Aside from defect reports, the
trial application is the uninvolved customer’s
primary and perhaps only interaction with the
infrastructure supplier.

The problem with the uninvolved approach
is that infrastructure can heavily determine
the ease with which your system can integrate
with other systems. The infrastructure layer
typically involves numerous integration points,

New Year’s
Integration Resolutions

Steve Vinoski • Verivue

cont. on p. 94

Toward Integration

94 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

such as application protocols, struc-
tures, and formats for marshaled
data, event loops, signal handling,
configuration files, and services for
logging and discovery. Many infra-
structures go so far as to provide all
these capabilities and more. If you
don’t understand the infrastructure,
then you have no hope of really un-
derstanding whether or how you can
integrate it with other software.

You could argue that customers
who build close relationships with
their infrastructure suppliers must be
large, well-heeled companies that can
afford to invest their own personnel in
the relationship. Fortunately, thanks
to open source software, this asser-
tion isn’t necessarily true. Although

there typically isn’t a vendor behind
an open source system, a community
of software users and developers al-
most certainly exists, and you can
contribute to such a community in
many ways. For example, to ensure
that the system does what you expect
it to, at the very least you should try
to contribute your acceptance tests to
the software’s test suite.

Heterogeneity
I hereby resolve to avoid believing
my system is homogeneous.

Developers often think they’re
building a self-contained homoge-
neous system. They forget or ignore
the fact that successful systems tend
to live for a long time and that users
reuse them outside the context for
which the developers had originally
designed them. Within those foreign
contexts and with the passage of
time, programming languages, ap-

plication protocols, data formats, and
distributed services might all be very
different than what the supposedly
self-contained system expects.

In a self-contained system, devel-
opers concern themselves primarily
with internal component implemen-
tations and how those components
interact with each other — they don’t
consider any factors outside the sys-
tem. Consequently, developers nec-
essarily consider attributes such as
coupling and cohesion with only that
internal focus in mind. Thus, cou-
pling between internal components
tends to be high because everything
is developed together. But when it
comes time to integrate this sup-
posedly self-contained system into
a larger context involving other in-

dependently developed software, all
the assumptions of self-containment
become readily apparent, and they
wind up increasing the difficulty of
integrating systems.

In my experience, systems are
rarely homogeneous. The inevitable
technology changes stemming from
the passage of time are alone more
than enough to guarantee heteroge-
neity. Because heterogeneity is in-
evitable, resign yourself to dealing
with it, or better yet, learn how to
take advantage of it.

New Technologies
and Approaches
I hereby resolve to keep an open
mind about new languages, systems,
and approaches that might make my
integration problems easier or less
expensive to solve.

It’s easy to get stuck in a rut. As
a developer, you find a technology or

approach that seems to work well for
one problem, so you stick with it. The
better you learn it, the more powerful
and capable you feel, so you try to use
it for every problem that comes along.
Eventually, you wind up doing such
a fine job convincing your manage-
ment of your new favorite approach’s
effectiveness that they decide to make
it the standard way — in some cases,
sadly, the only way — to do things at
your company. In other words, you’ve
just painted yourself into a corner.

Rather than fighting technologi-
cal change, which is pointless, make
it work for you. Like anything else,
vetting new technologies and ap-
proaches takes practice — the more
you do it, the easier it becomes and
the more agile you’ll be. If you’re not
regularly reading and experiment-
ing to keep current with the changes
and advances in the realms of dis-
tributed systems and integration,
then you’re likely to find yourself
unable to change direction when the
situation demands it.

For example, try to make a list
of your systems’ trouble spots and,
as you hear or read about new tech-
nologies or approaches, objectively
consider whether you can use them
to improve those problem areas. If
any solution shows promise, use it
to build some experiments or proto-
types to see if it delivers useful im-
provements. Keep an open mind, and
don’t grow personally attached to the
technologies you currently employ —
doing so will only prevent you from
switching to something better when
you really need to.

Communicate Effectively
I hereby resolve to use the right com-
munication patterns for the problem
at hand.

Unfortunately, some developers
do get very attached to certain dis-
tributed communication styles and
overuse them as a result. For ex-
ample, I recall a project in which
someone decided to allow only asyn-

Because heterogeneity is inevitable,
resign yourself to dealing with it, or better yet,
learn how to take advantage of it.

cont. from p. 96

JANUARY/FEBRUARY 2009� 95

New Year’s Integration Resolutions

chronous calls because synchronous
calls block the client and tie up a
server thread for the call’s duration.

One problem with such a rule is
that it fails to recognize that certain
communications are naturally either
synchronous or asynchronous. Ser-
vice discovery calls, for example, are
normally synchronous because the
caller needs to know how to reach
the service it’s searching for before it
can proceed. Because the client can’t
proceed until it receives the service–
discovery information, forcing the
client to make the call asynchronous-
ly will gain nothing. In fact, doing
so can make the client more compli-
cated than it needs to be by requiring
it to have a server-style architecture
for registering message handlers, re-
ceiving incoming messages, and dis-
patching them to the right handlers.
It also additionally complicates both
client and server by forcing them to
be able to properly correlate asyn-
chronous requests with their replies.
Additional complexity always nega-
tively impacts integration efforts.

Events and notifications, on the
other hand, are naturally asynchro-
nous. For this case, synchronous client
polling unnecessarily ties up the client
and uses server resources, even with-
out pending events, whereas asynchro-
nous notifications let servers notify
clients only when they have events to
send. Distributed logging messages are
also naturally asynchronous.

Another problem with an all-
calls-must-be-asynchronous rule is
that it represents a failure to un-
derstand appropriate system layer-
ing. The underlying distribution
infrastructure doesn’t need to handle
synchronously what appears synchro-
nous to a given application’s thread.
Don’t overcomplicate your applica-
tion by infusing it with what should
be infrastructure-level details.

Use Existing Agreements
I hereby resolve to use an existing
agreement wherever possible.

This resolution paraphrases a line
from an October 2008 blog entry by
Mark Baker of Coactus Consulting (see
www.markbaker.ca/blog/2008/10/
rim-doesnt-get-the-web). Here, the
term agreement refers to anything
two or more integrated components
or applications must agree on in or-
der to successfully interact with each
other, such as interfaces, data ex-
change formats, and application and
network protocols.

When you reuse an existing
agreement, you increase the chances
of being able to integrate with other
systems that already understand that
agreement. Conversely, inventing a
new agreement means that existing
systems and components can’t par-
ticipate without modification. If such
changes are necessary, then the more
distributed a system is, the less likely
it is that all the participants can in-
corporate the required modifications
in a synchronized fashion.

Existing agreements often rep-
resent proven solutions. In the real
world, there’s a good chance that
someone else has already solved
whatever it is you’re trying to solve.
Some developers have no problem
with this idea. In fact, their devel-
opment efforts consist largely of
performing Web searches for exist-
ing solutions and copying them. At
the other extreme are developers
who think their requirements are so
unique that a solution couldn’t possi-
bly already exist. Both approaches are
dangerous. The first is like trying to
learn how to use a calculator without
learning the underlying mathemati-
cal principles — you wind up being
able to solve only those problems that
exactly fit the sequence of the cal-
culator button presses you’ve memo-
rized. The second approach is flawed
because it means you not only waste
time solving problems that someone
else has already solved, but there’s a
good chance your solution might not
be as informed or optimized as what’s
already available.

Understanding an existing agree-
ment’s constraints is key to being able
to use it. Knowing the constraints not
only tells you where you must con-
form to the agreement but also im-
plies what areas are left unrestricted.
The unconstrained areas provide open
spaces in which your application or
component can reside and perform its
operations, whereas the constraints
generally dictate how you connect it
to the rest of the system.

My favorite example that illustrates
the utility of using existing agree-
ments is the Unix command pipeline,
where the shell connects the output
of one command into the input of an-
other. This simple yet highly effective
agreement constrains the file descrip-
tors a command application must use
for pipeline I/O, but it doesn’t restrict
the type of data the application pro-
duces or consumes or the application’s
use of other file descriptors. It also
doesn’t restrict how you implement the
application — it can be a shell script;
an interpreted Ruby, Perl, or Python
program; or a compiled Java, C++,
or C application, for example. Users
benefit when applications employ the
existing pipeline agreement because it
lets them combine applications in un-
foreseen but helpful ways. Application
developers also benefit because they
can avoid the complexity and over-
head of augmenting their applications
with capabilities that other Unix com-
mands already provide.

L ike real-life New Year’s resolu-
tions, our integration resolutions

are easy to make and, unfortunately,
just as easy to break. Keep them, and
you’ll surely save yourself some in-
tegration headaches.�

Steve Vinoski is a member of the technical

staff at Verivue. He’s a senior member

of the IEEE and a member of the ACM.

You can read Vinoski’s blog at http://

steve.vinoski.net/blog and contact him at

vinoski@ieee.org.

