
MAY/JUNE 2008	 1089-7801/08/$25.00 © 2008 IEEE	 Published by the IEEE Computer Society� 83

Toward Integration

Multilanguage Programming

Steve Vinoski • Verivue

H ave you ever worked on an integration
project with a developer who possesses
seemingly limitless knowledge, wisdom,

and experience with the various systems and
techniques required? We’ve all heard of — and
might even know — individuals from various
professions who are considered to be excep-
tional at what they do. Whether they’re athletes,
actors, mechanics, or software developers who
focus on integration, such people all possess
extensive vocabularies. Here, the term “vocabu-
lary” refers not to spoken or written words, but
more abstractly to the tools, tactics, and tech-
niques pertinent to each profession. Top basket-
ball players know multiple ways to help their
teams with scoring, passing, and defense, and
they can adapt their games as needed. Virtuoso
musicians are skilled at multiple instruments,
styles, and techniques. Seasoned integration de-
velopers tend to be knowledgeable in a variety
of technical areas, not only because they’re ex-
posed to many technologies over time but also
because they often face project pressures of get-
ting disparate systems to work together.

The software development vocabulary is, of
course, quite rich. In the big picture, it ranges
from firmware and low-level device drivers to
high-level applications, with various operating
systems, command shells, editors, compilers, li-
braries, frameworks, protocols, and debuggers in
between. Woven among those are more abstract
elements such as algorithms, patterns, and pro-
gramming language idioms.

Despite the fact that this breadth and rich
variety has been the norm in software develop-
ment for years, many developers continually try
to avoid it by sticking with one editor or one
operating system. Nowhere is this phenomenon
more pronounced, however, than in the area of
programming languages. Rather than choosing
the best language for the task at hand, many
developers (even those working on integration)

try to bend the problems they face to fit their
favorites. The results are often vastly inferior to
what they might have been if the developers had
chosen the right languages to begin with.

Increased Productivity
Knowing and using multiple programming lan-
guages for normal day-to-day development can
yield significant benefits. No single language
is a great fit for all problems. A programming
language usually owes its existence to one sim-
ple fact: its designer felt it could address a set
of problems — perhaps even just one problem
— better than other available languages. This
belief is apparently not uncommon: thousands
of languages have come and gone and thou-
sands more will follow. Numerous trade-offs are
involved in programming language design and
development, so there’s room for many different
approaches and variants.

Unsurprisingly, monolingual developers tend
to choose general-purpose rather than special-
ized programming languages. General-purpose
languages perform adequately for a wide variety
of problems, but they generally yield predomi-
nantly middle-of-the-road solutions — neither
great nor terrible. Of course, some monolingual
developers possess extremely deep and thorough
knowledge of their programming languages, and
so know how to exploit them to the fullest. Yet,
even such power programmers are constrained
by the languages’ practical limits.

It might be technically possible to solve a text-
processing problem with a programming lan-
guage designed primarily for number crunching,
but nobody would argue that it’s a good choice.
There’s little point in putting in the extraordi-
nary effort needed to extract an unnatural solu-
tion from a language that’s not designed for the
problem at hand. This number crunching versus
text processing example might be obvious, but it
clearly indicates that language choice is an impor-

Toward Integration

84 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

tant factor in developer productivity.
Most scenarios that involve choosing
the best language for a given prob-
lem are not as obvious; nevertheless,
productivity increases that stem from
choosing the right language can be
significant and worthwhile.

Because general-purpose languages
are often “good enough” for a wide va-
riety of problems, monolingual devel-
opers tend to fall into ruts and never
even consider other options. Consider
XML processing, for example. For
many languages, it can introduce a lot
of accidental complexity — additional
overhead associated with the solution
rather than the problem — because
of the inherent impedance mismatch
between constructs available in XML
and those provided by typical gen-
eral-purpose languages such as Java
and C++. Many developers simply put
up with the mismatch and slog their
way through, eventually reaching
what is, at best, a mediocre solution.
To help with productivity issues, they
often resort to code generation, map-
ping XML constructs to statically
typed programming language con-
structs to try to ease the impedance
mismatch.

Unfortunately, that approach can
be extremely brittle as a result of
converting highly flexible XML con-
structs into rigid static data types that
are difficult to version adequately.
Any changes to the XML document
then require new code generation
to reflect those changes, even if the
application doesn’t use the specific
modified XML entities. The newly
generated code can, in turn, require
changes to the application code that
uses it, so that any application us-
ing the generated code must undergo
full build, test, and redeployment
cycles. Any minor productivity gains
achieved through code generation are
quickly lost in the noise when com-
pared to ongoing maintenance costs.

Contrast this story of XML de-
velopment — unfortunately, repeated
quite often in enterprise-integration

scenarios — with simply using a pro-
gramming language that’s better
suited to the task. For example, the
Python language xml.etree module
makes XML handling almost trivial
(even with versioning), and Perl has
XML packages that are equally easy
to use. Erlang’s xmerl module is quite
good as well. Better still, though, are
languages that support literal XML,
such as ECMAscript for XML (E4X)
and Scala, which both let develop-
ers write XML directly within the
language’s syntax. Literal XML ef-
fectively eliminates the impedance
mismatch between XML and the
programming language, letting the
developer write just a few lines of
code versus what might require hun-
dreds or thousands of lines in a com-
bination of generated and manually
written brittle Java or C++ code.

Easier Maintenance
Far from being limited to initial devel-
opment, productivity gains from choos-
ing the right language are even more
pronounced in the code-maintenance
phase, the span of which, for a suc-
cessful long-lived system, far exceeds
the time required to first develop it.

In The Mythical Man-Month: Es-
says on Software Engineering,1 Fred
Brooks cites several studies showing
that the effort required to develop and
maintain software rises exponential-
ly with the number of instructions.
He also explains that this phenome-
non appears to be independent of the
programming language in use. Given
the exponent of 1.5 that he specifies,
a program with three times as many
lines of code as another program re-
quires more than five times as much
effort to develop and maintain. With
five times the number of lines, the
level of effort increases 11 times, and
with 10 times as many lines, develop-
ment and maintenance take a whop-
ping 32 times the effort.

Extension and maintenance are
areas in which the benefits of choos-
ing the right language really shine.

In part, this is because the right lan-
guage lets developers provide ini-
tial solutions quicker, thus putting
applications into users’ hands that
much sooner. Users can then pro-
vide quicker feedback and enhance-
ment requests, which the developers
can, in turn, service quicker — not
least because using the right lan-
guage means fewer lines of code to
modify or augment. This process
can become a cycle of positive re-
inforcement, in which fewer lines
of code result in fewer defects and
easier enhancement, which leads
to happier users who provide free
word-of-mouth advertising along
with better feedback that helps im-
prove the software even further.

Those who disagree with Brooks
typically claim that modern integrat-
ed development environments (IDEs)
and other tools invalidate the results
he cites, but I’m unaware of any for-
mal studies or publications to that ef-
fect. Judging from my own personal
experience, IDEs can certainly en-
hance productivity, but only for par-
ticular languages such as Java and
Smalltalk. This means they’re often
only partially useful, and sometimes
not useful at all, to multilanguage
developers. Although I’ve definitely
seen developers display much higher
productivity than others they worked
with, in my experience it’s never been
only because those developers used
IDEs while the others didn’t.

Whether or not you use an IDE, an
application’s size has a tremendous
impact on its development and main-
tenance costs. The larger the appli-
cation, the more developers it takes
to fully understand its architecture,
design, and implementation, and the
less likely it is that any single devel-
oper can visualize and memorize the
whole system at once. As the number
of these core developers needed to
completely comprehend the system
grows, the number of communica-
tion channels between them increas-
es exponentially. The more of these

MAY/JUNE 2008� 85

Multilanguage Programming

paths there are, the harder it is to en-
sure that code changes to the system
are appropriate and correct.

Brevity, therefore, matters a
great deal. If any of several lan-
guages could deliver acceptable per-
formance, scalability, throughput,
and other relevant characteristics,
but one of them required an order of
magnitude fewer lines of code, that’s
the one you’d want to choose.

Integration
One issue that comes up when con-
sidering multilanguage program-
ming is how to get the different
languages to work together. Fortu-
nately, this isn’t nearly as problemat-
ic as it might seem, especially within
enterprise integration environments.
Integration often implies distribu-
tion, which means that various parts
of the system communicate through
network messages. The network thus
provides natural boundaries between
components, allowing developers to
use the most suitable programming
language to write each component.

For non-networked multilanguage
integration, virtual machine devel-
opment has moved from targeting
single languages to supporting mul-
tiple languages. For example, the Mi-
crosoft Common Language Runtime
(CLR) supports a growing number of
languages and enables languages of
vastly different types — imperative,
functional, and dynamic or “script-
ing” languages, for example — to in-
terwork. Similarly, the Java virtual
machine (JVM) has evolved from a
Java-only platform to a base for a va-
riety of languages, including JRuby,
Scala, Groovy, JavaScript, E4X,
Jython, and many others.

Given the JVM’s evolutionary
path as a multilanguage platform, I
find it ironic that the Java communi-
ty seems to have more than its share
of fanatical monolingual developers.
It costs essentially nothing for a Java
developer to use another JVM-based
language, other than the time and ef-

fort to learn the other language. Be-
cause all JVM-based languages are
built on the same underlying byte
code, Java code can call into them,
and they can call Java code and all
existing Java libraries. The JVM thus
provides a virtually pain-free way to
mix and match the best languages
for each part of an application.

Barriers
I’ve heard that some Java developers
avoid using other languages because
their management simply demands
it. Such managers believe that they
can more economically develop and
maintain a wide variety of solu-
tions by sticking to a single general-
purpose popular language such as
Java. They consider their developers
to be commodities that they can eas-
ily interchange and replace because
finding Java programmers is (at least
for now) relatively easy. Thus, they
believe Java-only development pro-
tects them from being stuck with
code that only a few experts know
how to read or maintain.

Managers who make such choices
fail to consider all the costs involved
in software development and main-
tenance. Allowing the use of better-
suited languages — especially those
that are JVM- or CLR-based — could
easily lower a system’s overall cost
across its lifetime by reducing its size
and thus the effort required to work on
it. Smaller systems require fewer de-
velopers, which can mean significant
short- and long-term cost savings.

Some developers claim it’s just too
hard to learn new languages, and that
the time you spend wallowing in me-
diocrity as you perfect your newfound
skills would be better spent working
with the language you already know.
For those who’ve struggled to learn
a single general-purpose language
such as Java or C++, the very prospect
can be daunting because they expect
all languages to be just as large and
complicated. Fortunately, languages
such as Lisp, Python, and Erlang are

relatively simple in terms of core con-
cepts, so beginners can be productive
with them very quickly. Yet, the ap-
parent simplicity of such languages
belies a richness that can keep hard-
core language enthusiasts busy for
years discovering hidden treasures.

I would never claim that learning
a new language is easy, but I can

say from experience that the more
languages you learn, the easier it be-
comes to learn yet another. Each new
one you learn also helps improve your
skills with those you already know:
you tend to better understand the core
concepts, which helps you see im-
proved ways of using each language.

If you work on integration proj-
ects, one way to get started on a new
language is to choose an “edge” sys-
tem to develop in that language. Take
some relatively isolated client code,
for example, and re-implement it in
a language that you think, based on
research and some light experimen-
tation, could make it smaller and
easier to maintain. Focus not only
on learning the new language’s best
practices but also on how best to in-
tegrate it with the rest of the system.
If you succeed there, move across the
network and try something on the
server side. Whatever you do, don’t be
afraid of failure, because failing can
be a very productive way to learn.

After all, do any of us really
believe we’ve already learned the
last programming language we’ll
ever need?�

Reference
F.P. Brooks, The Mythical Man-Month:

Essays on Software Engineering, 2nd ed.,

Addison-Wesley, 1995.

Steve Vinoski is a member of the technical

staff at Verivue in Westford, Massachus-

setts. He is a senior member of the IEEE

and a member of the ACM. You can read

his blog at http://steve.vinoski.net/blog/

and reach him at vinoski@ieee.org.

1.

