90

MAY e JUNE 2004

Toward Integration

Steve Vinoski * IONA Technologies

puting, 1 wrote about several Web Services

(WS) specifications that define facilities and
approaches required to support notification-
based and event-driven systems. I had not
intended to write a two-part column series, but
just after I finished that column, a group of com-
panies, including Hewlett-Packard and IBM, pub-
lished their WS-Notification specifications
(www-106.ibm.com/developerworks/library/
specification/ws-notification/). Since then, sev-
eral readers have asked why I didn’t include
these new specifications, so I've decided to cover
them here.

WS-Notification is actually a family of
documents:

I n the March/April issue of IEEE Internet Com-

e The white paper “Publish-Subscribe Notifica-
tion for Web Services”! serves as a base docu-
ment for the others. It presents the general
notification pattern’s basic concepts, WS-Noti-
fication’s goals and requirements, and defines
the terminology used in the related specifica-
tions. The paper also contains a detailed and
useful discussion of WS-Notification’s securi-
ty aspects.

e The Web Services Base Notification (WS-Base
Notification) specification? describes the
notification-producer and consumer interfaces,
along with their associated semantics. It also
details the message exchanges required to ful-
fill these interfaces.

e The Web Services Topics (WS-Topics) specifi-
cation® defines the features required to allow
applications to work with topic-oriented noti-
fication systems.

e The Web Services Brokered Notification (WS-
Brokered Notification) specification? identifies
the interfaces, message exchanges, and seman-
tics associated with intermediaries known as

Published by the IEEE Computer Society

More Web Services
Notifications

notification brokers. These brokers serve as both
consumers and producers of notification mes-
sages, and can help increase performance and
scalability in notification-based systems.

WS-Notification addresses event-driven systems.
Not surprisingly, there are several similarities
between WS-Notification and WS-Eventing*
(which I addressed in last issue’s column). For
example, both specify interfaces and messages
used for event subscription and event delivery.
Both rely on WS-Addressing® to provide endpoint
references for notification consumers, and both
supply features supporting automatic subscription
timeout. However, there are also significant dif-
ferences between the two specifications, related
mainly to the scope of their coverage.

WS-Base Notifications

The WS-Base Notification document’s main con-
tribution is two-fold; defining the Notification-
Producer interface (supported by applications that
accept notification subscriptions and send notifi-
cation messages) and the NotificationConsumer
interface (supported by applications that subscribe
to notification messages).

WS-Base Notification lets consumers accept
“raw” notification messages (which are application-
specific) or “notify” messages (which essentially
wrap raw messages with notification-specific infor-
mation). These messages include the topic associ-
ated with the message, the dialect used to specify
the topic, and an optional endpoint reference to the
producer. Notify messages serve as a general noti-
fication-delivery approach because they can con-
tain any type of application-specific notification
message. A single notify message can also contain
multiple notification messages, thus supporting
efficient batch-notification delivery.

Producers serve two roles in WS-Notification:

1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

producing notifications and handling
notification subscriptions. To create a
subscription, a subscriber must send
specific information to a
NotificationProducer, including:

e a consumer endpoint reference to
which the producer can send noti-
fication messages;

e a topic expression, which identifies
the topics the consumer is interest-
ed in;

e a dialect for that expression;

e an optional indicator for whether
the consumer wishes to receive raw
notification messages or notify
messages (by default, consumers
receive notify messages);

e an optional precondition expression,
the details of which are specific to
each notification producer. The pro-
ducer does not deliver any message
for which evaluation of the precon-
dition expression returns false;

e an optional selector expression,
which the producer applies to noti-
fication messages that already meet
the subscriber’s topic expression.
The notification producer does not
deliver a message if evaluating the
selector expression against the
message returns false. Selector
expressions are thus useful for per-
forming message filtering within
the producer; and

e an optional suggested termination
time for the subscription. (This
time, which is relative to the pro-
ducer’s clock, controls the sub-
scription lifetime.)

The response to a subscription request
is an endpoint reference that includes
an identifier for the newly created sub-
scription, as well as an address for a
SubscriptionManager service, which
can manage the subscription (when
contacted). The SubscriptionManager
interface allows a consumer to pause
and resume subscriptions in order to
control message delivery. Depending
on the producer’s quality of service, a
consumer that pauses a subscription

IEEE INTERNET COMPUTING

More Web Services Notifications

might later get all missed messages by
resuming the subscription (although
the specification doesn’t require pro-
ducers to maintain any such missed
messages). The SubscriptionManager
interface also lets the consumer read
and write subscription properties.

Notification Topics

Applications that use notifications
typically receive only those notifica-
tion messages that fulfill certain cri-
teria. As an analogy, consider a pub-
lic discussion site for home-theater

The WS-Notification topic ap-
proach is flexible and powerful. Top-
ics are arranged within topic spaces,
which use XML namespaces to avoid
topic-definition clashes. Topics are
named and might have child topics,
thus allowing for the definition of
topic hierarchies or trees. The specifi-
cation supports several topic expres-
sions, which are used to specify topics
in subscribe and notify messages, as
well as to indicate the topics that noti-
fication producers support. The WS-
Topics document specifies several topic

The WS Notification topic-based approach
allows message filtering within the
producer, the consumer, or a combination
of both, which is important for scalability.

enthusiasts. The site moderator likely
wants to see all messages in order to
ensure that the site contains only
home theater-specific messages that
conform to site etiquette and to keep
spam from getting through. Site sub-
scribers, on the other hand, almost
certainly want to see only those mes-
sages that address specific subtopics
they’re interested in, rather than read-
ing all the messages published to the
site. Presumably, such a discussion site
could be organized to allow sub-
scribers to sign up for only those mes-
sages that cover topics they specify.

WS-Notification supports specific
topics that help consumers receive
only those notification messages of
specific interest. The topic-based
approach has been used for years in
message-oriented middleware, and is
thus well understood. When the pro-
ducer has a notification message to
send, it verifies that the message’s
topic overlaps with the consumer’s
subscription. If there is no such over-
lap, the producer does not deliver that
message to that consumer.

www.computer.org/internet/

expressions, including a simple
approach that refers only to root top-
ics within a given topic space, and a
full approach that uses XPath-like
expressions to refer to topics.
Because of its flexibility, the WS-
Notification topic-based approach
allows message filtering within the
producer, the consumer, or a combi-
nation of both, which is important for
scalability. Filtering occurs in the pro-
ducer based on the topics specified for
a consumer’s subscription, along with
any selector expressions and precon-
dition expressions associated with
that subscription. Consumers can then
apply further criteria to filter mes-
sages that arrive from a producer. In
event-driven systems that do not sup-
port message filtering, every con-
sumer receives every message. If the
producer performs the filtering, it
eliminates wasted network bandwidth
and consumer processing cycles.
However, it also adds overhead to the
processing that the producer performs
for each message. Thus, if imple-
mented poorly, performing all the fil-

MAY e JUNE 2004 91

Toward Integration

tering could leave the producer
unable to keep up with the desired
message-delivery rate. WS-Notifica-
tion topics, together with precondi-
tion and selector expressions, are
flexible enough to avoid locking
applications into undesirable low-per-
formance filtering approaches.

Notification Broker

I have implied that notification produc-
ers always send notification messages
directly to notification consumers. Such
a direct connection approach is useful
in closed systems in which there are rel-
atively few producer and consumer
applications — and those applications

arate from application concerns.

Conceptually, a notification broker
is somewhat similar to a router: it
accepts notification messages on the
incoming side and sends them out
again on the outgoing side. On the
incoming side, the broker fulfills the
NotificationConsumer interface; on
the outgoing side, it fulfills the
NotificationProducer interface. To a
notification producer, the broker
appears as a consumer, but to a con-
sumer, it appears as a producer. One
broker can even subscribe to another,
which can be useful for distributing the
processing load associated with topic
filtering.

WS-Notification can support everything
from simple event-driven systems to
complex enterprise-scale multibroker

notification systems.

already know each other and are unaf-
fected by the coupling introduced by
direct connections. Most event-based
systems, however, seek to completely
decouple producers and consumers.

A notification broker is designed to
provide highly scalable notification
handling that eliminates coupling
between producers and consumers.
Notification brokers operate as inter-
mediaries between producer and con-
sumer applications, such that produc-
ers and consumers each know about
the broker but do not know about each
other. Because applications that pro-
duce or consume notifications are not
normally designed to also fulfill large-
scale notification requirements, bro-
kers can improve system scalability by
offloading the difficult aspects of noti-
fication handling (such as dealing with
subscriptions, filtering, efficient deliv-
ery to multiple consumers, and mes-
sage persistence). By doing so, brokers
help keep infrastructure concerns sep-

92 MAY e JUNE 2004

Final Impressions
The WS-Notification family is exten-
sive, making it hard to describe all its
features in this column space. I've
therefore tried to touch on the most
important parts. Overall, though, the
WS-Notification family is a winner.
The specifications are well written and
relatively easy to understand — large-
ly because they borrowed tried-and-
true approaches from previous notifi-
cation and messaging systems rather
than reinventing the wheel. WS-Noti-
fication can therefore support every-
thing from simple event-driven sys-
tems to complex enterprise-scale
multibroker notification systems.
Compared to WS-Notification, WS-
Eventing is a simple subset, roughly
equivalent to WS-Base Notification.
Given this equivalence, I don’t know
why the companies that authored these
specifications couldn’t agree on that
subset and avoid producing competing
specifications. I hope WS-Base Notifi-

www.computer.org/internet/

cation and WS-Eventing can be com-
bined sometime in the future.

Shifting Gears:
Middleware Blogging

Before closing out this column, I want
to touch on Web logging, or blogging.
As most of you probably know, a blog
is an online journal that not only
allows writers, or bloggers, to easily
publish content to the Web but also
allows readers to add comments to
each posting. Each blog is thus similar
to a discussion board. Far more inter-
esting, however, is that blogs tend to
get linked together to form distributed
discussion boards when various blog-
gers comment about postings they’ve
read in other blogs. It is amazing how
quickly blog-facilitated discussions
can progress, and how widely they can
spread — even across seemingly unre-
lated blogs.

Not surprisingly, an active middle-
ware blogging community exists. |
generally find the blogs by Werner
Vogels (http://weblogs.cs.cornell.edu/
AllThingsDistributed/), Sean McGrath
(http://seanmcgrath.blogspot.com/),
and Phil Wainewright (www.loosely
coupled.com/blog/) to be very insight-
ful. You can also read my own blog,
“Middleware Matters” — play on words
intended, of course — at www.iona.
com/blogs/vinoski/. I use mine to post
middleware-related commentary that
goes above and beyond this column,
such as information specific to IONA’s
products, calls for papers for confer-
ences and workshops, or discussions
and ideas that are not “cooked”
enough to publish here. I also post
pointers to my columns there, and
have enjoyed the feedback I've gotten
from readers and other bloggers.

When I posted a pointer to last
issue’s column, several bloggers posted
comments about it. Mark Baker, in par-
ticular, posted several thought-
provoking comments (www.markbaker.
ca/2002/09/Blog/2004/03/11#2004-03
-vinoski-notifications). He took issue
with my assertions that URIs can’t easi-

IEEE INTERNET COMPUTING

ly represent some transport mechanisms
or multiprotocol endpoints. To solve the
problem of using URIs to represent
problematic transports, such as message
queues whose parameters are not easily
encoded in URI form, Baker suggested
establishing a service that takes the mes-
sage queue details as input, creates a
resource to represent them, and returns
an HTTP URI for that resource.

This same approach could be used
to solve the multiprotocol issue. While
this approach would certainly work,
Baker and I agree that in many cases
it’s a fairly heavyweight addition to
make to a production system. It intro-
duces a level of distributed indirection
for middleware subsystems that sets up
and tears down communications chan-
nels, effectively requiring them to set
up one temporary channel just to
retrieve the information required to set
up the channel to the actual target ser-
vice. In addition, this approach poten-
tially introduces a single point of fail-
ure if the communication resource
service is not replicated. It also bur-
dens production systems with another
distributed moving part that requires
additional deployment, management,
and maintenance considerations.

Interestingly enough, the Corba
Interoperable Object Reference (IOR)
format® already solves the issue of
directly representing all the communi-
cation details required for accessing
multiprotocol services. Unfortunately,
it does so by encoding arbitrary proto-
col-specific data into an unreadable
hexadecimal digit string (at least in its
“stringified” form) that generally
scares most people away. It would be
interesting to take the IOR approach —
that is, to encode one or more com-
munication profiles together into a
single structure — and try to recast it
into a URI scheme.

Baker’s points are definitely worth
additional consideration, and I certain-
ly appreciate his taking the time to read
this column and provide feedback.
Other bloggers took issue with partic-
ular details of my WS-Addressing and

IEEE INTERNET COMPUTING

More Web Services Notifications

WS-Eventing specifications review, or
with my opinion regarding the unclear
standardization paths for these specifi-
cations. You can find the details of
these folks’ views in my blog. I look
forward to continuing to learn from
other bloggers, and also to receiving
further feedback on my columns. [@

Acknowledgments
Thanks to Chris Ferris and Steve Graham for

reviewing a draft of this column.

References
1. S. Graham et al., “Publish-Subscribe Notifi-

cation for Web Services,” v. 1.0, joint specifi-
cation by BEA Systems, IBM, and Microsoft,
Mar. 2004; www-106.ibm.com/developer
works/library/specification/ws-notification/.

2. S. Graham et al., “Web Services Base
Notification (WS-Base Notification),” v.
1.0, joint specification by BEA Systems,
IBM, and Microsoft, Mar. 2004; www-
106.ibm.com/developerworks/library/
specification/ws-notification/.

3. S. Graham et al., “Web Services Brokered
Notification (WS-Brokered Notification),” v.
1.0, joint specification by BEA Systems, IBM,
and Microsoft, Mar. 2004; www-106.ibm.
com/developerworks/library/specification/
ws-notification/.

4. S. Graham et al., “Web Services Topics (WS-
Topics),” v. 1.0, joint specification by BEA
Systems, IBM, and Microsoft, Mar. 2004;
www-106.ibm.com/developerworks/library/
specification/ws-notification/.

5. A. Bosworth et al., “Web Services Address-
ing (WS-Addressing),” joint specification by
BEA Systems, IBM, and Microsoft, Mar.
2003; www-106.ibm.com/developerworks/
webservices/library/ws-add/.

6. The Common Object Request Broker: Core
Architecture, Object Management Group,
OMG document no. formal/02-12-06, 2002.

Steve Vinoski is chief engineer of product inno-
vation for IONA Technologies. He’s been
involved in middleware for 16 years. Vinos-
ki is the coauthor of Advanced Corba Pro-
gramming with C++ (Addison Wesley Long-
man, 1999), and he has helped develop
middleware standards for the OMG and
W3C. Contact him at vinoski@ieee.org.

www.computer.org/internet/

SEETHE

FUTURE OF
COMPUTING

in IEEE Intelligent Systems

Tomorrow's
PCs,
handhelds, and
Internet will use
technology that
exploits current research in
artificial intelligence.
Breakthroughs in areas such
as intelligent agents, the
Semantic Web, data mining,
and natural language
processing will revolutionize
your work and leisure
activities. Read about this
research as it happens in
IEEE Intelligent Systems.

//computer.org/intelligent/subscribe.htm

http

MAY e JUNE 2004 93

