
Toward Integration

It’s Just a
Mapping Problem

W e normally use middleware as the
“glue” that connects applications and
services. The diverse and heterogeneous

nature of many business-computing environments
— caused by continuous changes in technology,
products, business organizations, and business
requirements — means that the need to adapt appli-
cations to each other never ceases. In fact, all soft-
ware performs adaptation at one level or another,
but adaptation is middleware’s raison d’être.

Adapting applications to each other requires
mapping between the concepts, functions, or data
native to each application, and identifying the
abstractions under which each application can per-
form correctly and efficiently. Determining appro-
priate abstractions at any level is never easy, but
doing so is critical to an application’s utility and
success. For example, the Web would not have suc-
ceeded if users had to place online orders not
through the abstraction of filling in a browser-based
form, but by writing the SQL necessary to enter
transactions directly into a vendor’s order database.

Interface vs. Implementation
Middleware often employs declarative languages
that help users define abstractions for the services
they’re implementing or integrating. Interface def-
inition languages (IDLs) are common in RPC sys-
tems, such as the Distributed Computing Environ-
ment (DCE), and in distributed object
environments, such as Corba. In systems like these,
a middleware developer is expected to implement
— using one or more mainstream programming
languages — applications that either supply or
consume distributed services. Mappings relate the
abstractions provided at the IDL level to features
found at the programming language level.

For example, a cornerstone of Corba is its support
for multiple programming languages: C, C++, Java,
Cobol, PL/I, Smalltalk, and Python. The Corba stan-
dard includes mappings from IDL for each support-
ed programming language. Because each separate

mapping starts with the same IDL, the mappings all
resemble one another to some degree, and yet each
mapping is unique because it relies on specific
idioms of the target programming language. Using
a programming language’s idioms lets the mapping
be as natural as possible for users of that language.

I know from many years of experience with
Corba that users generally dislike the language
mappings for IDL. In some cases, they feel the lan-
guage mapping itself is unnecessarily complicat-
ed. For example, this is definitely the case for C++
mapping.1 In other cases, such as Java, some feel
they should be able to use Java directly as their
IDL, instead of being forced to use Corba’s map-
ping. This desire is especially prevalent for users
familiar with Java-specific middleware such as
Java RMI or Enterprise JavaBeans (EJB), and it’s
even common among Corba users who program
only in Java. While Corba includes a “reverse map-
ping” from Java to IDL (mainly to support inter-
operability between EJB systems and Corba sys-
tems), the IDL that results from applying the
reverse mapping to Java class definitions is so
abstruse that developers generally avoid it.

What’s ironic is that the primary reason devel-
opers generally dislike IDL mappings is the same
reason the mappings exist in the first place. The
goal is to merge middleware abstractions directly
into the realm of the programming language, min-
imizing the “impedance mismatch” between the
programming language world and the middleware
world. For example, mappings make request invo-
cations on distributed objects and services appear
as normal programming-language function calls,
and they map distributed system exceptions into
native programming language exception-handling
mechanisms. In systems like DCE and Corba, in
which the primary focus for developers is writing
applications that supply or consume requests and
replies, language mappings provide the means for
programmatic access to the contents of those
requests and replies. The language mapping’s per-

88 MAY • JUNE 2003 Published by the IEEE Computer Society 1089-7801/03/$17.00©2003 IEEE IEEE INTERNET COMPUTING

Steve Vinoski • IONA Technologies • vinoski@ieee.org

ceived quality is measured by the
transparency with which it makes mid-
dleware artifacts appear as natural ele-
ments of the programming language
and its environment. Unfortunately,
the wrong transparencies can incor-
rectly mask distributed-computing
issues, such as those related to con-
currency and partial failure.2 This
occurs when multiple levels of abstrac-
tion are mixed together inappropriate-
ly, thus making them indistinguish-
able. Many developers find such a
mixture of separate concepts and
abstractions confusing as well.

Despite their flaws, IDL mappings
offer a more pragmatic solution in this
space than other alternatives. You
might instead consider extending a
programming language with new key-
words or constructs that support dis-
tributed systems, for example, or writ-
ing an entire new distributed systems
language from the ground up. While
such approaches are often technically
superior to mapping approaches, they
fail from a market-adoption perspec-
tive for several reasons.

• First, language extensions and new
languages are rarely standardized
and are usually supported by only a
single vendor. Few users are willing
to bet their middleware applications
on such a risky approach, given that
it could easily fail in the market and
leave them with applications based
on unsupported technologies.

• Second, such languages are essen-
tially “one size fits all” solutions that
try to force homogeneity into a sys-
tem by requiring everything to be
switched over to use them. In many
enterprise-computing settings, how-
ever, there are systems that simply
cannot be replaced without incur-
ring significant cost or downtime;
reimplementing them in any lan-
guage is thus out of the question.
Even though Java, for example, is
successfully employed in many cir-
cles as both a programming lan-
guage and a middleware system, it’s
still far from being the universal
glue that’s applicable in all problem

domains. Therefore, it only moves,
rather than eliminates, the need for
IDLs and their mappings.

You might argue that these
approaches are not as different as I
claim them to be, because an IDL also
attempts to create a certain level of
homogeneity within heterogeneous
systems. That argument is inaccurate,
however, because an IDL introduces
homogeneity at the interface level,
while a programming language and
other “binary standards” such as IBM’s
System Object Model (SOM), Java, and
Microsoft’s COM and .NET introduce
homogeneity at the implementation
level. This difference is significant. For
example, the “interface” that we use to

drive a car has not changed much over
the past 70-80 years, but implementa-
tions of the driver–car interface have
advanced significantly within that
same time period, including innova-
tions such as power steering, automat-
ic transmission, and antilock brakes.
Similarly, the separation of interface
from implementation provided by IDLs
allows them to enable integration
without forcing reimplementation of
the applications being integrated.

Document Abstractions
Middleware systems oriented around
requests and replies tend to promote
strongly typed service interfaces that
supply or consume strongly typed mes-
sages. This isn’t surprising, given that
we can trace the roots of such middle-
ware back to the programming lan-
guage level. However, it’s commonly
understood that the request–reply
model isn’t applicable to all systems,
especially those in which connectivity
is occasional, or in which loose cou-
pling is required. In such systems,

approaches based on asynchronous
messaging are often superior.

Not surprisingly, mappings in asyn-
chronous messaging systems differ
from their request–reply counterparts.
In messaging systems, applications
tend to deal with untyped messages
that flow in only a single direction. An
application receives a message, takes
action depending on its contents, and
may emit one or more messages as a
result. To support such applications,
messaging middleware focuses on
routing, queuing, and store-and-for-
ward capabilities for messages, rather
than on transparently transmitting
typed requests and replies.

In message-oriented systems, map-
pings tend to focus at a coarser level of

granularity than their request–reply
counterparts. This is not surprising
because the loose coupling that mes-
saging systems promote minimizes
interaction between applications, thus
forcing messages to be largely self-con-
tained. Because messages often tend to
represent real-world artifacts from busi-
ness processes (such as purchase orders,
invoices, and shipping notices), their
mappings are document-oriented, and
applications that manipulate them are
built around the abstraction of docu-
ment processing. In such applications,
XML continues to rapidly gain favor for
representing these documents.

XML’s use for document-oriented
messaging systems provides for a
wide variety of mappings. This is
partly because a messaging middle-
ware system does not need to know
or care about the contents of the
messages it handles unless it’s per-
forming content-based routing.
Because the middleware avoids type
checking message content, such
checking is left to the application,

IEEE INTERNET COMPUTING http://computer.org/internet/ MAY • JUNE 2003 89

Mapping Problem

What’s ironic is that the primary reason

developers generally dislike IDL mappings is the

same reason the mappings exist in the first place.

which means that the application can
choose whatever mapping it prefers.
XML documents are not, by default,
fully self-describing (contrary to
what some believe), but the mecha-
nisms by which they can be “typed”
— through Document Type Defini-
tions (DTDs) or XML schemas — are
well understood. Like the mapping
for the XML document itself, the
choice of what kind of validation (if
any) to apply to an XML document is
left entirely to the application.

The number and variety of available
XML mappings seems to grow almost
daily. Tools that support XML map-
pings, such as those based on common
approaches like the Document Object
Model (DOM), the Simple API for XML
(SAX), and XML Stylesheet Language
Transformations (XSLT), are available
in a variety of programming lan-
guages. In fact, the growing use of
Web services and SOAP has helped
push the envelope on XML parsing
techniques, and helped to continually
boost the performance of XML parser
implementations.

Mapping Transparency
Few mappings are lossless. To illustrate,
let’s consider the integration of two sys-
tems, A and B. Typically, any mapping
that adequately represents the abstrac-
tions of both systems — thereby allow-
ing them to be integrated — will fail to
fully represent all the capabilities of
both systems. A mapping between A
and B covers the intersection, not the
union, of A’s and B’s capabilities, thus
ignoring some features from each.

While it seems obvious that map-
ping losses are acceptable, I have wit-
nessed numerous cases where people
strive for complete mappings. Invari-
ably, they find they can develop 70–80
percent of the mapping with relative
ease, but the final 20–30 percent is
quite painful, if not practically impos-
sible. The drive for complete mappings
is often rooted in a set of theoretical
integration needs, rather than a set of
actual integration use cases. Without
practical use cases, the tendency is to
try to map all the features of system A

into system B, without regard for how
— or even whether — those features are
actually used in practice.

This issue is particularly interesting
because of the current high level of
interest in Web services. Numerous
projects are currently mapping Web
services onto various technologies,
platforms, and formats, including
mainframes and J2EE application
servers. As I’ve stated in previous
columns, I believe Web services are best
used for creating document-oriented,
loosely coupled integrations of under-
lying existing middleware systems.
Efforts directed toward supporting that
include standardizing flow languages
for Web services, such as the Business
Process Execution Language for Web
Services (BPEL4WS, see www-106.
ibm.com/developerworks/webservices/
library/ws-bpel/). Other efforts, direct-
ed more at mapping existing middle-
ware technologies directly to SOAP or
Web Services Definition Language
(WSDL), are not as straightforward.

For example, imagine a mapping
from Corba IDL to WSDL, which lets
Web service applications make use of
existing Corba services. On the surface,
such a mapping is problematic given
that WSDL does not readily support the
IDL concept of object references. It’s
very common for IDL interfaces to have
operations that take object references as
parameters or return object references
as results. For example, the Corba Nam-
ing Service operation that resolves an
object given its name returns an object
reference, as does an object factory in
any Corba implementation of the Fac-
tory pattern.3 This is clearly a case
where reaching a 100 percent mapping
would be difficult, if not impossible.

A pragmatic middle ground is to
apply a combination of approaches.
First, rather than shooting for a 100
percent mapping, develop a standard
that maps an appropriate subset of
Corba IDL to WSDL. Integration pro-
jects could then use this subset of IDL
to wrap any existing IDL that uses
nonmappable elements. For instance,
the Factory pattern is typically used to
create client-specific objects that are

used by a single client and then
destroyed. You could implement a
wrapper Corba object with a WSDL-
compatible interface to serve as the
Factory pattern client, thus completely
shielding applications using the WSDL
interface from the object reference
returned by the factory object. You can
apply this “half map, half wrap”
approach in a wide variety of
instances, especially when combined
with code-generation tools that help
create the implementation for you.

Ultimately, your take on mapping’s
place in middleware comes down to
whether you accept the assertion — as
I do — that enterprise computing sys-
tems tend toward diversity and hetero-
geneity. Those who understand and
accept this assertion readily accept the
need for mappings and the limitations
they present. Those who continually
strive to homogenize their computing
systems, on the other hand, are essen-
tially fighting a losing battle because
they’re swimming upstream against
ever-advancing technology and ever-
changing business requirements.
Change is, of course, inevitable. Part of
planning for change means making
your middleware applications as loose-
ly coupled and flexible as possible, and
good mappings play an important part
in achieving those goals.

References
1. D.C. Schmidt and S. Vinoski, “The History

of the OMG C++ Mapping,” C/C++ Users J.,
Nov. 2000; www.cuj.com/experts/1811/
vinoski.htm.

2. J. Waldo et al., A Note on Distributed Com-
puting, tech. report SMLI TR-94-29, Sun
Microsystems Laboratories, 1994; www.
sunlabs.com/technical-reports/1994/abstract
-29.html.

3. E. Gamma et al., Design Patterns—Elements
of Reusable Object-Oriented Software, Addi-
son Wesley, 1995.

Steve Vinoski is vice president of platform tech-

nologies and chief architect for IONA Tech-

nologies. He is coauthor of Advanced Corba

Programming with C++ (Addison Wesley

Longman, 1999). Vinoski serves as IONA’s

alternate representative to the W3C’s Web

Services Architecture working group. Con-

tact him at vinoski@ieee.org.

90 MAY • JUNE 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

