
Toward Integration

Java Business Integration

IEEE INTERNET COMPUTING 1089-7801/05/$20.00 © 2005 IEEE Published by the IEEE Computer Society JULY • AUGUST 2005 89

Steve Vinoski • IONA Technologies

F or as long as I can remember, an argument
has been making the rounds in distributed
computing circles about how best to define

interfaces for distributed elements. Some advocate
the use of an interface definition language (IDL),
whereas others prefer to use programming lan-
guages directly. (There are even those who prefer
to avoid explicitly defining interfaces altogether,
but I’ll ignore that position for now.)

Not surprisingly, the Java community has tra-
ditionally sided with the programming language
approach — arguing, in part, that IDLs are too far
removed from the languages that developers use
for implementation, and that the resulting mis-
match often makes it difficult to map between the
two. In practice, this means that either the IDL
forces the developer to use an unnatural program-
ming style, or the interface developer is stuck
defining cumbersome interfaces to match the pro-
gramming language. One of the most blatant
examples I’ve personally experienced of this
impedance mismatch is the Corba Java-to-IDL
reverse mapping,1 which is intended to let devel-
opers define Corba interfaces in pure Java and map
the results into Corba IDL. Although the approach
produces reasonable results for systems defined
entirely in Java, the resulting IDL is strange and
overly complex, creating further complications if
it must subsequently be mapped to a language
other than Java.

The desire to avoid such mismatches has led, in
part, to the development of various approaches
centered on “plain ol’ Java objects” (POJOs). One
such example is the Hibernate framework (www.
hibernate.org), which provides developers with
transparent support for storing Java objects in
relational databases. Rather than relying on
detailed component interfaces or complex object
hierarchies characteristic of older frameworks, the
POJO approach lets developers focus on produc-
ing normal Java code, while relying on tools and

reflective infrastructure to transparently adapt that
code for persistence, security, transactions, and
other orthogonal qualities and capabilities.

The POJO approach works well if you’re a Java
programmer developing a pure Java system, but
what happens when such purity isn’t possible? The
world of enterprise integration is often an
“impure” place in which heterogeneous networks
include everything from mainframes to blades
running an amalgam of operating systems and
applications. Given that Java is unlikely to be the
only language in use in such settings, there’s a
clear need to step above individual programming
languages and define services at a more abstract
level that applies equally to various scripting,
transformation, and programming languages.

Integration
On the flip side of the coin, traditional enterprise-
integration approaches often leave much to be
desired. The enterprise application integration
(EAI) movement of the late 1990s, for example,
was built mostly around proprietary systems with
their own canonical protocols and data formats
operating in centralized hub configurations. To
integrate a system into the hub, administrators had
to purchase an adaptor to convert its protocols and
data formats to the hub’s canonical protocols and
data formats. For any message to get from one
integrated system to another, it had to go through
the hub via at least two protocol and format con-
versions, which resulted in low overall perfor-
mance. Support for standards, if any, was often
tacked on to EAI products as barely working after-
thoughts. I attended a talk at a meeting a few years
ago during which an industry analyst stated that,
on average, EAI projects required a minimum
investment of US$500,000 and 18 calendar
months of effort before they realized any results.
I don’t know for certain whether those figures were
accurate, but all in all, it’s no secret that much of

the industry regards EAI as a failed
integration strategy that served only to
lock customers into single-vendor pro-
prietary “money pit” systems.

Because of these shortcomings, the
service-oriented architecture (SOA),
based mainly on Web services, is
largely replacing EAI today.2 The defi-
nitions and distinctions here are
admittedly murky, however, because it
seems that EAI proponents (apparently
having seen the writing on the wall)
have recently redefined the term “EAI”
to incorporate Web services.

Lessons Learned
Anyone intent on developing a Java-
based framework for enterprise inte-
gration would do well to keep a few
things in mind. One lesson is that
today’s Java programmers want to

write Java, not stylized or otherwise
“special” Java that must incorporate
framework-specific artifacts. Another
lesson is that standardizing a suitable
integration-focused framework would
be a good idea, given that the alterna-
tive is to add yet another proprietary
system to a field already rife with
stove-piped solutions that don’t work
together. The most important lesson,
however, could well be that when it
comes to integration, Java can’t solve
it all. Making it possible for solutions
outside traditional Java programming
to work within the framework is thus
a necessity, not a nicety.

One standards effort currently tar-
geting the business-integration space is
Java Specification Request 208, entitled
“Java Business Integration” (JBI).3 Like
other JSRs in the Java Community
Process (JCP; www.jcp.org), JBI obvi-
ously has to work with the Java 2 plat-
form — in this case, both the standard
and enterprise editions (J2SE and J2EE,

respectively). It also wisely goes beyond
the Java-centric focus in most JSRs and
aims to accommodate implementation
alternatives outside the pure Java space.

The approach underlying JBI is a bit
unusual compared to other JSRs in that
it uses Web services at its core. Rather
than focusing on how to build Web ser-
vices using Java, it promotes an archi-
tecture that’s strongly based on Web
services’ principles and approaches.

JBI Architecture
Fundamentally, JBI is a pluggable
architecture consisting of a container
and plug-ins. The container hosts
plug-in components that communicate
via message routers. Architecturally,
components interact via an abstract
service model — a messaging model
that resides at a level of abstraction

above any particular protocol or mes-
sage-encoding format. JBI is an SOA:
it treats its components as service
providers and consumers.

Abstractions are quite useful, of
course, but concrete instances of them
are ultimately necessary to get real
work done. JBI uses the Web Services
Description Language (WSDL) for both
abstract and concrete specification of
its component messaging model. The
abstract model defines message types
that service providers and consumers
can exchange, abstract operations
comprising those messages, and ser-
vice types or interfaces that group
related operations together. The con-
crete model defines binding types to
specify protocols, endpoints to specify
concrete communication details for
reaching services, and services that
group related endpoints to specify
actual service instances.

The JBI environment is a collection
of components that reside within a sin-

gle Java virtual machine (JVM). Ser-
vices can reside outside the JBI envi-
ronment and connect into it via bind-
ing components (BCs), or they can
reside within subcontainers, called ser-
vice engines (SEs), that live directly
within the JBI environment. Services
connected into a JBI environment,
whether through an SE or a BC, com-
municate with each other via the nor-
malized message router, which is the
JBI environment’s primary service.

Normalized
Message Router
The NMR mediates message exchanges
between service consumers and
providers and can also act as a kind of
discovery service to help consumers
locate appropriate service providers.
BCs and SEs communicate with the
NMR via delivery channels, which are
objects that provide methods for send-
ing and accepting messages and for
creating message-exchange factories.
These factories allow service consumers
to create specific message-exchange
instances for use with target services.

At a minimum, JBI implementa-
tions are required to support message-
exchange sequences based on four
standard, well-understood WSDL
message-exchange patterns (MEPs):

• In-only: the service consumer sends
a message to the service provider,
which provides no response. The
exchange is complete when the
provider indicates completion or
error by invoking an API call to set
the status of the exchange. With
this MEP, providers have no way to
indicate fault details to consumers.

• Robust in-only: the consumer sends
a message to the provider, which
either sets the exchange status
(completing the exchange) or re-
turns a fault to the consumer, who
must then set the exchange status
to complete it.

• In-out: the consumer sends a mes-
sage to the provider, which returns
an output message or a fault. The

90 JULY • AUGUST 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

JBI is an SOA: it treats its components as
service providers and consumers.

consumer completes the exchange
by setting the exchange status.

• In-optional-out: the consumer
sends a message to the service
provider, which either returns an
output message or fault or com-
pletes the exchange by setting its
status. If the provider returns a
fault, the consumer sets the ex-
change status to complete it; if the
provider returns an output, the
consumer can complete the ex-
change by setting its status, or it
might respond with a fault, in
which case the provider must set
the exchange status to complete it.

To perform these MEPs, consumers
and providers first create message-
exchange instances via message-
exchange factories and then invoke
send and receive operations on the
delivery channels. Message-exchange
instances carry not only messages but
also metadata and state information
for the given exchange.

All the messages exchanged
through the NMR are normalized mes-
sages, which doesn’t imply that all
messages are converted to a canonical
format. As I mentioned, EAI systems
already proved that translating
messages into canonical formats can
negatively impact performance, scala-
bility, and the ability to further inte-
grate systems with other integration
infrastructures. The NMR avoids these
negative impacts by treating message
payloads as opaque data that it simply
sends along to the receiver.

The NMR is a classic framework in
the sense that it expects BCs and SEs
plugging into it to fulfill certain inter-
faces and contracts. However, the NMR
imposes essentially no constraints on
how BCs or SEs are internally imple-
mented or how they interface with the
elements they’re integrating. The fact
that developers can implement SEs as
subcontainers implies that they can
host virtually any type of message
processors, including Extensible
Stylesheet Language Transformation

(XSLT) engines, Business Process Exe-
cution Language (BPEL) systems, and
even POJOs — whatever can peaceful-
ly exist within the JVM hosting the JBI
environment. Similarly, BCs are free to
adapt virtually any kind of protocol or
format employed by third-party appli-
cations or middleware systems, which
provides an avenue for elements out-
side the JBI environment, including
other JBI environment instances, to
participate in JBI message exchanges.

Management
Because the JBI environment deals
with pluggable components, it must
also deal with lifecycle and deploy-
ment issues. For example, administra-
tors need to be able to install compo-
nents into a JBI environment and to
start and stop them for maintenance or
debugging purposes. Such needs are
fairly standard requirements for inte-
gration middleware and distributed
computing systems.

To handle these issues, the JBI
environment, not surprisingly, makes
use of Java Management Extensions.
JMX management beans provide func-
tions that deal with installation,
deployment, monitoring, and lifecycle
concerns for the JBI environment
itself, for BC and SE components that
plug into JBI environments, and also
for subcomponents that might plug
into SE subcontainers.

T he JBI specification, weighing in at
244 pages, is too rich and detailed

to fully cover in this column space.
Instead, my intent here is to provide a
feel for what the specification is about
and explain some of the basics so that
you’ll have some familiarity when you
sit down to read it yourself.

What impresses me most about the
JBI specification are its balance and
incorporation of lessons from the past.
It avoids trying to invent things —
something standards should never try
to do — and instead relies on existing
standards, such as WSDL and JMX,

and tried-and-true distributed com-
puting approaches for message pro-
cessing to bring some order to the
world of business integration. I am
disappointed, however, that the speci-
fication doesn’t detail any interfaces
for supporting interceptors4 or filters,
which are useful for easily creating
message-processing pipelines.

JBI supports the principles of SOA,
in part, by being an SOA itself. It also
avoids being overly prescriptive, and
thus maintains the needed flexibility
to extend Java integration’s reach.

The specification chooses a
reasonable middle ground with respect
to the interface-definition issues. JBI’s
authors also clearly knew well enough
to avoid EAI’s technical failures, and
they paid close attention to lessons
learned from the Java Message Service
(JMS) and J2EE Connector Architec-
ture (JCA). The end result is that JBI is
solid enough to support interoperable,
enterprise-capable, and practical inte-
gration solutions, which ultimately is
what an SOA aims to provide.

References

1. Java to IDL Language Mapping Specification,

version 1.3, Object Management Group,

Sept. 2003; www.omg.org/docs/formal/03

-09-04.pdf.

2. S. Vinoski, “Integration with Web Services,”

IEEE Internet Computing, vol. 7, no. 6, 2003,

pp. 75–77.

3. R. Ten-Hove and P. Walker, Java Business

Integration (JBI) 1.0, final release, 24 May

2005; www.jcp.org/en/jsr/detail?id=208.

4. S. Vinoski, “Chain of Responsibility,” IEEE

Internet Computing, vol. 6, no. 6, 2002, pp.

80–83.

Steve Vinoski is chief engineer of product inno-

vation for IONA Technologies. He’s been

involved in middleware for more than 17

years. Vinoski is coauthor of Advanced

Corba Programming with C++ (Addison-

Wesley Longman, 1999), and he has helped

develop middleware standards for the Object

Management Group (OMG) and the World

Wide Web Consortium (W3C). Contact him

at vinoski@ieee.org.

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2005 91

Java Business Integration

