
Invocation Styles

IEEE INTERNET COMPUTING 1089-7801/03/$17.00©2003 IEEE Published by the IEEE Computer Society JULY • AUGUST 2003 83

Toward Integration

Steve Vinoski • IONA Technologies • vinoski@ieee.org

T o obtain my BS in electrical engineering, I
had to pass several general engineering
courses. I recall taking two such courses

back-to-back in my third year. The first class, sta-
tics, dealt with topics such as calculating how
much load various structures such as bridges could
handle, based on both their construction and the
physical characteristics of the materials used to
make them. The second class, dynamics, had us
analyzing various characteristics of systems in
motion, such as acceleration, velocity, and friction.
The topics are quite different, yet complementary.
Understanding one but not the other would make
for an incomplete engineering knowledge base,
which is why both classes were required for all
engineering disciplines.

The terms static and dynamic also exist in mid-
dleware, but they apply to very different concepts:
we most often use them to describe different ser-
vice-invocation styles — the nature of the infor-
mation that a middleware application requires to
properly invoke a given service. Just as engineer-
ing statics and dynamics play an important role in
analyzing and designing real-world mechanical
systems, robust middleware applications require
static and dynamic styles of service invocation.

To invoke a service, you need the following
information:

• Service address — where to contact the service.
The address might be something as simple as a
TCP host name and port number, or something
more complex such as a Corba interoperable
object reference (IOR) or a message queuing
end-point identifier.

• Service contract — what you’re supposed to
send to the server and what, if anything, it is
supposed to return to you. For message-orient-
ed systems, we normally specify contracts in
terms of documents, such as purchase orders or
requests for quotes. For remote object systems,
contracts are generally synonymous with

object interfaces because they tell you what
operations your applications can invoke and
what the parameters and return type are for
each operation.

• Service semantics — what the service actually
does. Technically, semantics are part of the
contract, but I’ve separated them out because
the contract portion can easily be specified in
a form, such as a Java interface or an XML
schema, which applications can read and
process. Unfortunately, the same cannot be said
for semantics. Despite the considerable effort
invested in developing machine-understand-
able semantics, much work remains before they
become another everyday part of the average
programmer’s toolkit.

In other words, what you need to know to invoke
a service is: what to send to it, where to send
what you’re sending, and what the service will
do for you. I already discussed issues surround-
ing the “where to send” aspect in a previous col-
umn on service discovery.1 Here, I’ll focus on
“what to send.”

Static Invocation
Applications that employ static invocation have a
priori knowledge of what to send to a particular
service instance. For example, consider the fol-
lowing Corba interface definition language (IDL)
interface for an employee phone book service:

module HumanResources {
struct Employee {
string name;
string address;
string location;
string organization;
string phone_number;

};
typedef sequence<Employee>
EmployeeSeq;

interface PhoneBook {
exception NoMatch {
string name;

};

EmployeeSeq lookup(
in string surname

) raises(NoMatch);
};

};

Our PhoneBook interface provides a
single operation named lookup, which
takes the employee’s surname as a
string and returns a sequence of struc-
tures, each of which represents an
employee with that surname. If no
employees have the surname, the
lookup operation throws a NoMatch
exception.

A Java application could invoke an
instance of the PhoneBook service
using code like this:

try {
Employee[] data =
phonebook.lookup(“Smith”);

} catch (NoMatch ex) {
System.err.println(“Employee ”
+ ex.name + “ not found”);

}

Compiling this code into the Java
application gives it static knowledge
of the PhoneBook interface, the
lookup operation, the Employee
structure, and the NoMatch exception.
With Corba, the developer adds this
static knowledge to the application by
compiling it with additional code gen-
erated by an IDL compiler from the
original IDL definition. Armed with
this static knowledge, the application
can invoke the lookup operation as if
it were just another normal Java

method call (well, almost2). Static
invocations like this one work well for
developers writing them in statically
typed programming languages such as
Java and C++. As the example shows,
the IDL definitions are mapped into
the application programming lan-
guage in a way that makes using them
as natural as possible for the applica-
tion developer.

Unfortunately, this example’s sim-
plicity is misleading. In reality, the
developer has created a strong coupling
between the application and the Phone-
Book service, such that the application
will stop working if the PhoneBook ser-
vice ever changes. For example, the
developer who wrote the original
HumanResources module might decide
later that separating an employee’s

name into distinct first, middle, and sur-
names would make certain operations
easier and, thus, change the Employee
struct to:

module HumanResources {
struct EmployeeName {
string first;
string middle;
string last;

};
struct Employee {
EmployeeName name;
// the rest same as before

As soon as the developer recom-
piles the PhoneBook service against
this new IDL definition and redeploys
it, all applications using the service
that were compiled against the origi-
nal IDL definition will break. The
applications expect the service to
return a sequence of Employee struc-
tures in which the name field is a
string, not another structure. The IDL

compiler generates different marshal-
ing code for these two different
Employee structures. The service’s
marshaling code will return the name
field as a structure comprising first
name, middle name, and last name as
three strings, whereas the application’s
marshaling code will think the name
field is a single string. Upon receiving
the return value from the invocation,
the application will attempt to demar-
shal the field following the first name
field as if it were the address field, not
the middle name field. The application
will eventually fail because the service
has sent back more data than was
expected.

You could argue that the service
developer shouldn’t have changed the
name field definition, and should — at
a minimum — receive a stern warning
about silently breaking all the applica-
tions using the service. That’s true, but
alternative approaches aren’t all that
appealing: Rather than changing the
original Employee structure, the ser-
vice developer could have

• Added a new structure named
Employee2, and added a new oper-
ation named lookup2 to the
PhoneBook interface (because IDL
doesn’t support overloading) to re-
turn a sequence of Employee2;

• Created a new PhoneBook2 inter-
face that inherits the original
PhoneBook interface and provides
the new lookup2 operation that
returns Employee2, which avoids
changing the original PhoneBook
interface contract; or

• Created a new module HumanRe-
sources2 that contains the modi-
fied Employee structure and
PhoneBook interface.

As you can see, the problem comes
down to versioning. Static systems
generally do not handle versioning
very easily: the developer usually has
to build it into the code explicitly, by
tacking version numbers onto the
names of modules, interfaces, or struc-
tures. If you’ve ever maintained a sys-
tem in which seemingly arbitrary ver-

84 JULY • AUGUST 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

What you need to know to invoke a service is:

what to send to it, where to send what you’re

sending, and what the service will do for you.

sion numbers are part of the names of
types and methods, you already know
how confusing it can be.

Dynamic Invocation
Unlike static invocation applications,
which have all necessary invocation
information built into them, applica-
tions that use dynamic invocation
discover all the invocation informa-
tion they need at runtime. There are
various ways to do this, but all
revolve around some form of meta-
data management. For example, sys-
tems such as Java and C# support
reflection, which lets you dynamical-
ly load new classes, create instances
of them, and invoke their methods,
all on the fly and without any com-
pile-time knowledge of those classes
in your application.

Of course, reflection is nothing
new, but Java’s popularity and C#’s
growing popularity have put it into
more programmers’ hands than ever
before. Java’s support for reflection
has spawned some interesting appli-
cations, such as mock object imple-
mentations that avoid the need to
manually write code to stub out
dependent classes for unit tests. (For
an example, see Peter Morgan’s mock
objects approach; www.iona.com/
devcenter/mock_object/.)

Not surprisingly, middleware sys-
tems that provide some form of meta-
data management also tend to support
dynamic invocation. For example,
instead of a static invocation approach,
we could use Corba’s dynamic invoca-
tion interface (DII) to invoke the lookup
operation in the PhoneBook example.
(Normally, I would show the code for
using the DII in this fashion, but given
that invocations made through the DII
generally require an order of magni-
tude more lines of code than their sta-
tic counterparts,3 I do not have enough
space in this column.)

A general DII invocation requires
the application to create a Request
object, and then modify it to fill in
the details of each argument, as well
as any return value. Handling these
details is straightforward if the argu-

ments all have simple types, like
strings, but it gets painful with more
complex types such as the Employee
structure from the PhoneBook exam-
ple. Applications require facilities for
creating or examining complex types
such as these in terms of the simple
types they’re composed of. For exam-
ple, a dynamic application would
have to deal with the Employee
structure in terms of the string fields
that comprise it. In Corba, the
Dynamic Any facility provides this
functionality: when the service invo-
cation returns, the application uses
the same facilities to dynamically
examine any return values.

Applications that employ dynamic
invocation do not have service-con-
tract compile-time knowledge, so they
avoid versioning issues that can plague
static applications. However, this ben-
efit does not come for free. Dynamic
invocation applications tend to be
slower and larger than their static
counterparts because they use general
facilities to manipulate all types and
thus cannot rely on the programming
language or compiler for help. Further-
more, data values that dynamically
create instances of complex types on
the fly must come from somewhere
other than the application, which can-
not know all the semantics associated
with the types and values. For this rea-
son, dynamic invocation applications
tend to be human-driven with GUIs
that let the application query the user
for field values and display values for
user interpretation and consumption.

One issue with Corba’s support for
dynamic invocation is that its metada-
ta facilities are not built in; they are
provided in the form of an extra ser-
vice called the interface repository
(IFR). While this approach works, it
requires Corba interface developers
and objects to remember to populate
the IFR with the metadata. If they for-
get to do so, other developers can’t
write dynamic invocations against
those objects without finding the orig-
inal IDL definitions and adding them
to the IFR. In general, metadata that
must be added after the fact essential-

ly defeats the purpose of dynamic
invocation facilities.

Where Does
All This Leave Us?
Static invocation suffers from tight
coupling and versioning problems,
while dynamic invocation applications
can be too big, slow, and complex.
Fortunately, while these statements are
generally true, they do not apply in all
circumstances. In Corba’s early days,
there were strong disagreements
between the static invocation and
dynamic invocation camps, as if the
approaches were mutually exclusive.
Thankfully, neither camp prevailed,
and Corba supports both approaches,
as do other middleware systems that
have come along since then, including
Web services. As a result, many suc-
cessful middleware applications
deployed today use a combination of
invocation approaches. Static invoca-
tions are easy to develop and, with
proper attention to versioning issues,
can be easy to maintain. Dynamic
invocations are invaluable for appli-
cations such as debuggers, intercep-
tors, and bridges between disparate
middleware systems, which tend to
have to deal with many different types
on the fly. In other words, you need
both approaches. It looks like the engi-
neers got it right again.

References
1. S. Vinoski, “Service Discovery 101,” IEEE

Internet Computing, vol. 7, no. 1, Jan./Feb.,
2003, pp. 69–71.

2. J. Waldo et al., A Note on Distributed
Computing, tech. report SMLI TR-94-29,
Sun Microsystems Laboratories, Mountain
View, Calif., 1994; www.sunlabs.com/
technical-reports/1994/abstract-29.html.

3. S. Vinoski and D. Schmidt, “Dynamic Corba,
Part 1: The Dynamic Invocation Interface,”
C/C++ Users J., July 2002, www.cuj.com/
documents/s=7981/cujcexp 2007vinoski/.

Steve Vinoski is chief engineer of product inno-

vation for IONA Technologies. He has been

involved in middleware for 15 years. He is

the coauthor of Advanced Corba Program-

ming with C++ (Addison Wesley Longman,

1999), and he has helped develop middle-

ware standards for the OMG and W3C.

IEEE INTERNET COMPUTING http://computer.org/internet/ JULY • AUGUST 2003 85

Invocation Styles

