
Integration with
Web Services

IEEE INTERNET COMPUTING 1089-7801/03/$17.00©2003 IEEE Published by the IEEE Computer Society NOVEMBER • DECEMBER 2003 75

Toward Integration

Steve Vinoski • IONA Technologies • vinoski@ieee.org

I nvariably, there’s a difference between what
we’d like our enterprise computing systems to
be and what they really are. We like to envi-

sion them as orderly multitier arrangements com-
prising software buses, hubs, gateways, and
adapters — all deployed at just the right places to
maximize scale, load, application utility, and ulti-
mately, business value. Unfortunately, we know
that there’s a wide gulf between this idealistic
vision and reality. In practice, our enterprise com-
puting systems typically are tangles of numerous
technologies, protocols, and applications, often
hastily hard-wired together with inflexible point-
to-point connections.

Isn’t middleware supposed to fix all this? After
all, the whole point of middleware is to hide the
diversity and complexity of the computing
machinery underneath it. By adopting the abstrac-
tions that middleware provides, we’re supposedly
isolating our applications from the variety of ever-
changing hardware platforms, operating systems,
networks, protocols, and transports that make up
our enterprise computing systems.

Unfortunately, middleware’s success and prolif-
eration has recreated — at a higher level — the very
problem it was designed to address. Rather than
having to deal with multiple different operating
systems, today’s distributed-application develop-
ers face multiple middleware approaches. Indeed,
middleware does provide the promised abstrac-
tions, but different approaches provide different
types of abstractions. For example, those found in
message-queuing systems are quite different from
those in distributed object systems. The differences
between the various abstractions make it difficult
for applications to access different middleware-
based services simultaneously.

Middleware for Middleware
Working across multiple middleware systems has
become especially debilitating over the past two or
three years as the weak economic climate has forced

numerous companies to restructure, consolidate,
and downsize. They’ve had to reduce IT spending
and get the most out of existing IT assets — in part,
by integrating software systems they never imag-
ined would need to work together. Without the abil-
ity for applications to simultaneously access multi-
ple middleware systems, bridging such “middleware
islands” is difficult and expensive.

To bridge multiple middleware systems, today’s
integration applications require abstractions for
the underlying middleware itself. Because this is
software, the answer naturally requires some kind
of wrapping or additional level of indirection, but
the trick is finding a suitable technology to pro-
vide it. In some cases, you might extend one of
your enterprise middleware systems to wrap the
others and provide the desired abstraction unifor-
mity. But in many cases, this isn’t possible — some-
times due to technical reasons, but just as often
due to cost, lack of expertise, or even company
politics. Another approach is to build your own
custom middleware, but that can be expensive in
terms of development, maintenance, and even lost
opportunity should some new revolutionary tech-
nology come along.

For several reasons, we can best use Web ser-
vices to provide this “middleware for middle-
ware”1 abstraction layer for modern integration
applications. To begin with, they’re relatively
lightweight, avoiding the intrusive object models
and single programming language requirements
that other middleware systems force on us. Devel-
opers using “middleware dark matter”2 languages,
such as Perl and Python, generally find Web ser-
vices easy to work with. Moreover, ongoing Web
services standardization efforts free them from the
proprietary stigma of enterprise application inte-
gration (EAI) systems.

Web Services
Integration Framework
One project that’s implementing the middleware-

for-middleware view of Web services
is the Apache Web Services Invocation
Framework (WSIF; http://ws.apache.
org/wsif/). Over the past few years,
most Web services development tool-
kits targeted the SOAP level, providing
APIs that let applications create and
receive SOAP messages. While this
provides a certain useful level of
abstraction, it’s not enough.

SOAP APIs are not standardized, so
moving from one to another requires
changes in your application. More
importantly, SOAP APIs don’t hide
underlying transport details from
applications. This might not be a prob-
lem if all Web services used only HTTP,
but they don’t. Developers want to
address Web services over a variety of
protocols and transports, including

proprietary messaging systems and
standard distributed object protocols;
some even want to use them as local
programming-language objects. In
fact, a group of engineers at Sun
recently began working to define addi-
tional protocols in binary — not XML
— to allow for “fast Web services.”3

WSIF’s intent is to supply a Java
programming API that hides access
details for multiprotocol Web services.
Rather than focusing on SOAP, WSIF
focuses on the Web Services Defini-
tion Language.4 A WSDL definition
has two parts:

• A logical part, called the port type
or interface, defines the protocol-
independent Web service types and
input and output messages.

• A physical part defines the proto-
col-specific bindings you use to

access the Web service. A binding
for a given protocol specifies the
details required to let applications
exchange messages with a given
service instance using that protocol.

Separating a service abstraction from
its bindings is a key WSIF building
block. Protocol-specific providers that
handle the details of how messages are
sent and received over a specific pro-
tocol can thus fulfill an application’s
invocations on the protocol-indepen-
dent service abstraction. Under WSIF,
SOAP is just one possible provider;
others can access services implement-
ed using Enterprise Java Beans, the
Java Message Service, the J2EE Con-
nector Architecture, and local Java
objects. This approach lets services

share interface definitions and still
allow accessibility via multiple bind-
ings, which is precisely what’s needed
to allow an application to have practi-
cal simultaneous access to multiple
middleware systems. Or is it?

Middleware Switching
WSIF definitely is a step in the right
direction, but it’s not quite enough.
One of the biggest drawbacks is that
it’s a Java-only solution. Given that a
significant percentage of the world’s
middleware systems use C and C++, a
Java-only solution is fairly limiting.
Worse, it means that only those proto-
cols readily and practically accessible
in Java are available to your applica-
tion unless you’re willing to implement
your own providers, which is probably
contrary to the reasons you’d want to
use WSIF in the first place.

In addition to client applications
with multimiddleware access, there’s
a need for server-oriented multimid-
dleware applications to serve as multi-
middleware entry points to valuable
back-end business services. For exam-
ple, an article in the Boston Globe dis-
cussed how the e-commerce push in
recent years was not as successful as
hoped because many companies made
their internal brick-and-mortar and
Internet sales groups compete against
each other.5 One reason for this was
that many companies couldn’t envi-
sion the new Internet sales divisions
using and accessing the same dreary
old (often mainframe-based) business
systems that the traditional sales
channels used. The article also pointed
to Sears as a success story in this area
because it “ripped open” its store-ori-
ented computing systems to accom-
modate the Internet sales channel, let-
ting traditional and new sales groups
use the same enterprise computing
systems. Often, companies are afraid
to do what Sears did because they
can’t figure out how to address the
multimiddleware problem of leaving
existing services’ protocols and mes-
sage formats intact while letting new
clients access the same systems via
other protocols and message formats.

The typical EAI approach to inte-
gration is to use adapters to convert all
traffic to canonical formats and proto-
cols. To allow access to a given service,
you simply write an adapter that con-
verts between the EAI system’s canon-
ical protocol and format and those of
the service. This avoids the N2 proto-
col/format conversion problem and
makes building and maintaining
adapters easier. However, this ap-
proach penalizes the runtime perfor-
mance of every transaction passing
through the users’ computing systems
by requiring conversions whether
they’re needed or not. Furthermore,
canonical formats and protocols usu-
ally change over time, so they don’t
really solve the N2 conversion problem
in the long run.

To ensure high performance, a
multimiddleware router must allow

76 NOVEMBER • DECEMBER 2003 http://computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

In addition to client applications with

multimiddleware access, there's a need for

server-oriented multimiddleware applications to

serve as multimiddleware entry points to

valuable back-end business services.

for service abstraction while avoiding
conversions whenever possible. As in
WSIF, WSDL can provide both the
service abstraction definitions and the
binding definitions for such a router.
When a caller sends a message in a
given format through the router to an
abstracted service that happens to
expect that same format, there’s no
point in having the router first con-
vert the incoming message to a
canonical format, and then convert
the outgoing message back to the
original format. Similarly, when the
sender and receiver use the same pro-
tocol, the router wastes cycles by per-
forming unnecessary conversions in
the middle. Instead, the router must
recognize that the sender and receiv-
er are speaking the same protocol,
format, or both, and stay out of the
way wherever possible.

A multimiddleware router must
support message routing and com-
munication pattern bridging at vary-
ing levels of service. For example, it
should direct messages by simply
connecting an incoming port to an
outgoing port, by performing con-
tent-based routing based on mes-
sage-header attributes, or by routing
single incoming messages to multiple
destinations. It also must bridge dif-
ferent communications models used
by the underlying middleware. For
example, it might have to transpar-
ently bridge a synchronous Corba
client into a pseudo-synchronous
messaging system that uses one
queue for requests and another queue
for replies.

Carried to its logical conclusion,
such a router would appear to be a
magical universal translator, capable
of converting any incoming proto-
col/format pair into any other, all at
the highest possible efficiency level.
Needless to say, this is impossible
because not all protocols, formats, and
service semantics can be seamlessly
translated into others. For example,
bridging a synchronous client that
expects a single response to a broad-
cast message expecting multiple vot-
ing responses makes little sense. The

hard part for users is deciding how
best to abstract their existing services
into WSDL definitions suitable for use
with such a router, and to ensure that
their middleware supplier supports a
router with the necessary bindings. In
any case, the middleware supplier
should handle the difficult parts, rather
than taking the easy way out with
hard-wired canonical formats and
passing the resulting inefficiencies off
to their users.

Of course, no matter how efficient
routers might be, they automatically
introduce overhead by creating a net-
work hop. The router works well when
the client application and service
application already exist, such that the
router can use the WSDL contract cre-
ated for the service to route messages
between them. This avoids the need to
rebuild and redeploy either applica-
tion. However, for new applications,
it’s better to build in a multimiddle-
ware router. Of course, that is exactly
what WSIF does for outgoing mes-
sages from clients, but it’s also needed
for incoming messages for services.

Equipping new applications with
multimiddleware switching capabili-
ties requires linking a multimiddle-
ware router into the application
underneath a WSIF-like API. The API
abstracts away the underlying mid-
dleware and protects the application
from the details of the multimiddle-
ware capabilities beneath it, even
when such capabilities dynamically
load into a running process. Multipro-
tocol and multiformat applications are
nothing new — we’ve built them
before, using a variety of technologies
and approaches. (This has been the
main focus of my work for the past
decade, for example.) With the advent
and popularity of WSDL, combined
with the growing need for multimid-
dleware integration, such systems are
poised to become the norm rather
than the exception.

Conclusion
When applied correctly, Web services
can effectively to solve the multi-
middleware problem. Much work

remains, but WSIF is garnering atten-
tion, and IONA’s Artix (see www.iona.
com/products/middlewareint.htm)
already supports the routing and
switching capabilities described
above. As Werner Vogels’ article on p.
59 in this issue shows, many miscon-
ceptions unfortunately remain about
Web services.6 The technical press has
overhyped them to the point at which
they cannot possibly deliver on all the
promises made about them, and stan-
dards bodies continue to fight over
just what they are and who gets to
define them.

Despite all this, Web services are
proving in practice to be the key to
providing interconnections in our
multiple middleware enterprise com-
puting systems. In some circles, such
as the Corba technical community,
Web services are nevertheless still
viewed with disdain, being seen as
“Corba done wrong” — a technically
poor reinvention of a wheel already
working correctly. Personally, how-
ever, I view Web services as “EAI
done right.”

References
1. S. Vinoski, “Where is Middleware?” IEEE

Internet Computing, vol. 6, no. 2, 2002, pp.
83–85.

2. S. Vinoski, “Middleware ‘Dark Matter’,”
IEEE Internet Computing, vol. 6, no. 5, 2002,
pp. 92–95.

3. P. Sandoz et al., “Fast Web Services,” tech-
nical report; http://developer.java.sun.com/
developer/technicalArticles/WebServices/
fastWS/.

4. Web Services Description Language (WSDL)
Version 1.2, W3C working draft, 11 June,
2003; www.w3.org/TR/wsdl12/.

5. R. Weisman, “Online, Off Target: Retailers
Must Integrate Sales,” Boston Globe, 14
Sept. 2003, p. C2.

6. W. Vogels, “Web Services Are Not Distrib-
uted Objects,” IEEE Internet Computing, vol.
7, no. 6, 2003, pp. 59-66.

Steve Vinoski is chief engineer of product inno-

vation for IONA Technologies. He’s been

involved in middleware for 15 years. Vinos-

ki is the coauthor of Advanced Corba Pro-

gramming with C++ (Addison Wesley Long-

man, 1999), and he has helped develop

middleware standards for the OMG and

W3C. Contact him at vinoski@ieee.org.

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2003 77

Integration with Web Services

