
Toward Integration

Enterprise Integration
with Ruby

IEEE INTERNET COMPUTING 1089-7801/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society JULY • AUGUST 2006 91

Steve Vinoski • IONA Technologies

I f you’ve been involved in your share of corpo-
rate integration projects, the phrase enterprise
integration might evoke bad memories. Sadly,

some project managers and developers use it to
artificially boost their projects’ importance, or
worse, as an excuse for why their projects are late,
over budget, or not delivering required function-
ality. This phenomenon is somewhat universally
understood across the IT industry. Some develop-
ers even describe it with the derogatory term enter-
prisey, which is currently so popular that it even
has its own Wikipedia entry (http://en.wikipedia.
org/wiki/Enterprisey). Fortunately, not all enter-
prise integration projects are enterprisey; many
such projects successfully deliver new capabilities
or cost savings.

Continuing the theme in my past two columns,
which focused on using dynamic or scripting lan-
guages for integration, I take an in-depth look at
Maik Schmidt’s new book, Enterprise Integration
with Ruby.1 His treatment of enterprise integration
is eminently practical throughout. For example, he
uses the term “enterprise” to mean systems that
incorporate multiple technologies and approach-
es, such as databases, the Lightweight Directory
Access Protocol (LDAP), XML, messaging, Remote
Procedure Calls (RPC), and distributed objects. If
you need to glue such things together, Schmidt
offers experiential advice for using the Ruby pro-
gramming language to do it.

Ruby
Yukihiro “Matz” Matsumoto, of the Network
Applied Communication Laboratory, released ver-
sion 1.0 of Ruby in 1996. He patterned the lan-
guage after Perl and Python — “ruby” is a play on
“perl” — but wanted it to be more object-oriented
than either of them. The resulting language’s pop-
ularity has grown during the past decade, with a
recent explosion in interest due to the highly effec-

tive Ruby on Rails Web-development framework
(www.rubyonrails.org).

Databases
Given databases’ ubiquity in the enterprise, the fact
that Schmidt starts the book by showing how to use
Ruby for database applications isn’t surprising. He
begins by showing a low level of abstraction
involving native database drivers and SQL. Next,
he explains how applications can use the Ruby
database interface (DBI) to avoid dependencies on
specific database drivers. Because of DBI’s higher
level of abstraction, many enterprisey authors
might mindlessly push its use for all cases, instead
of native drivers. Schmidt avoids this path, how-
ever, and supplies a balanced view of the DBI
abstraction’s benefits and penalties. He points out
that unless your application requires some level of
database portability and independence, you might
want to avoid the DBI because it carries a perfor-
mance penalty, and its abstractions could hide
important database capabilities. Building enterprise
integration applications that actually work often
requires making practical trade-offs like these.

The third level of database abstraction ex-
plained in the book involves object/relational (O/R)
mappings. O/R approaches, like all such mappings,
suffer from impedance-mismatch problems
because object models and relational models ulti-
mately differ. Despite this issue, Ruby’s Active-
Record module provides a compelling O/R
mapping for many applications, and the book
includes several examples that show its capabili-
ties. But again, true to form, Schmidt also provides
a balanced discussion of ActiveRecord’s enterprise
readiness, explaining that it might not fit well with
legacy database systems that don’t follow the con-
ventions on which it relies.

Schmidt also shows how to write Ruby applica-
tions that use LDAP to access enterprise informa-

tion such as personnel and organiza-
tional records. Such applications, which
bear strong resemblance to database
applications, can access LDAP reposito-
ries using either the Ruby/LDAP mod-
ule or the ActiveLDAP module, which is
similar in concept and form to the
ActiveRecord database module.

XML
Continuing his refreshing theme of
practicality, Schmidt explains right off
that Ruby supports XML reasonably
well but has holes compared to lan-
guages such as Java and C#. With
expectations properly set, he then
dives into how to generate XML doc-
uments using raw strings and Ruby
modules such as REXML and Builder.

Generating XML via raw strings is
fraught with problems, as it’s easy to
miss or incorrectly combine opening
and closing tags. Moreover, the inter-
mixing of raw strings and Ruby code
for printing them makes the program
very hard to read and maintain.
Thankfully, REXML and Builder make
XML generation much more tractable.

The book also explains how to use
REXML to parse XML, using either a
tree approach (similar to the Document
Object Model [DOM]) or a streaming
approach (similar to the Simple API for
XML [SAX]). REXML reduces but does-
n’t eliminate the tedium of writing
XML-parsing applications — thus help-
ing explain Schmidt’s comments about
Ruby’s holes in terms of XML handling.
However, the book also describes the
XmlSimple module, which eliminates
some monotony from writing XML-
processing code. Instead, the module
converts XML documents into data
structures comprising hash tables and

arrays. This approach simplifies access
to XML element and attribute values by
using element and attribute names as
Ruby hash table keys.

Given that Ruby’s XML support
isn’t groundbreaking when compared
to other languages, the book describes
several alternatives to XML. The per-
sistent hype surrounding XML has led
some developers to believe it’s the only
way to represent hierarchical data, but
that’s definitely not the case. For
example, more data is probably repre-
sented with comma-separated values
(CSV, also known as character-
separated values) than any other for-
mat, and Ruby provides a CSV library
to read and write it.

Another format that’s popular with

dynamic language users is YAML,
which stands for “YAML Ain’t Markup
Language.” Ruby also supplies a mod-
ule for handling this simple, compact,
textual format for structured data rep-
resentation. The book mentions a cou-
ple of other alternative formats as well,
but I was surprised to see nothing on
the JavaScript Object Notation (JSON;
www.json.org), given that proponents
refer to it as the “fat-free alternative to
XML.” The popular, easy-to-write
data-interchange format is not only
available for just about any program-
ming language you can think of, it’s
also simple enough to parse with a sin-
gle line of Ruby code.

Networking
and Middleware
Enterprise applications often com-
municate with each other over net-
works. Some use simple socket-based
communications — an area in which
Ruby and other scripting languages

excel because they make using sock-
ets so simple. Other enterprise appli-
cations rely on middleware based on
Corba, Java 2 Enterprise Edition, main-
frame technologies, or various mes-
saging approaches.

The book first works through some
simple socket examples, which quickly
lead to showing how easy it is to write
HTTP-based Ruby applications. You’d
expect a Ruby HTTP client to be pretty
simple, but the author shows that writ-
ing applications for the HTTP server
side is relatively straightforward as
well. The Ruby WEBrick framework
handles all the complexities of acting
as an HTTP server, leaving the business
logic to your application. The WEBrick
application model is much like the
Java servlet model, in which incoming
HTTP requests cause the framework to
upcall particular methods on your
implementation. In response to an
HTTP GET request, for example, the
WEBrick framework invokes the do
_GET operation on your Ruby servlet
to handle the request. WEBrick also
supplies various servlets for common
tasks, such as serving files (the File-
Handler servlet) and executing CGI
scripts (the CGIHandler servlet).

Facilities such as WEBrick make it
very easy for Ruby applications to
handle HTTP-based interprocess com-
munication approaches, such as XML-
RPC and SOAP. If you’re forced to
communicate with an XML-RPC ap-
plication or add XML-RPC support to
your system, the xmlrpc4r module
makes it trivial to do so because it
provides a complete implementation
of XML-RPC. Similarly, Ruby provides
a soap4r library that implements
SOAP 1.1. For those who have to inte-
grate with WSDL-based services,
soap4r provides a WSDLDriverFactory
class that takes the name of a WSDL
file and generates a client proxy or
stub at runtime for the service that the
WSDL describes. The book also men-
tions that soap4r provides a separate
tool called wsdl2ruby, which generates
Ruby code based on the services spec-

92 JULY • AUGUST 2006 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

If you need to glue such things together,
Schmidt offers experiential advice for using
the Ruby programming language to do it.

ified in a WSDL document. Many Web
services systems provide similar tools
that generate Java or C++ code from
WSDL. The wsdl2ruby capability
could provide developers familiar with
these similar tools a good starting
point for using Ruby with enterprise
applications.

Despite all that the book has to
offer, its discussion of Corba is one
area with which I have some problems.
My experience with Corba dates all the
way back to 1991, so I like to think I
know a little more about it than the
average developer of distributed appli-
cations, especially given that I con-
tributed significantly to the Corba
specification over the years. First,
Schmidt claims that specifications
such as Corba were so complex that
“only big companies such as Sun, Bor-
land, and IBM had the power to imple-
ment [them], and even for them it was
sometimes too difficult to do it right.”
The main issue I have with this state-
ment is that my employer, IONA Tech-
nologies, has consistently been the
leader in the Corba market since enter-
ing it in 1993, and for most of its exis-
tence, IONA has employed fewer than
500 people — clearly, implementing
Corba isn’t limited to big companies.

The book continues its description
of Corba: “Consequentially, the situa-
tion today is a mess: there are imple-
mentations for only a few
programming languages, many systems
do not interact as they should because
of proprietary vendor extensions, and
all in all the former ‘standards’ have
been superseded by their young and
fresh fellows like XML-RPC anyway.”

All three claims in this statement
are wrong. First, Corba implementa-
tions exist for a wide variety of pro-
gramming languages, including C,
C++, Java, Smalltalk, Lisp, Ada, Cobol,
PL/I, Python, and Perl. Second, inter-
operability between Corba implemen-
tations is actually excellent, rather
than being as problematic as Schmidt
suggests. Finally, I personally don’t
know of any Corba projects that were

replaced with XML-RPC; the two tech-
nologies’ performance and utility dif-
fer so greatly that you can’t really
meaningfully compare them. Even
today, Corba powers many telecom-
munications and financial applica-
tions, and that won’t change anytime
soon because it’s very fast and highly
scalable for such applications.

Despite this misinformation about
Corba’s history and state, the book
describes a reasonable approach to
integrating Ruby and Corba. Rather
than trying to develop a full object-
request broker (ORB) in Ruby, the book
recommends using the Ruby Java
Bridge (RJB) to integrate Corba Java
clients with Ruby. RJB lets Ruby appli-
cations import Java classes and trans-

parently invoke them through the Java
Native Interface (JNI). Such clients can
then easily invoke Corba server ap-
plications. (The book also mentions
another approach: using JRuby, the
Ruby implementation for the Java vir-
tual machine (JVM), to embed Ruby in
the Corba client.) Schmidt then shows
how the Corba client can also be a
WEBrick server, effectively providing
HTTP access to Corba applications.

REST vs. SOAP
For the past few years, competing
camps have debated whether Represen-
tational State Transfer (REST) or SOAP
provides the more suitable approach for
Web services. Roy T. Fielding, now chief
scientist at Day Software, first described
the REST architectural style in his doc-
toral dissertation in 2000.2 REST is
widely considered to best describe the
World Wide Web’s architecture. SOAP,
on the other hand, is rooted in RPC-
based middleware.

Yet, while the debate has raged on,
practitioners have been busy making

use of both REST and SOAP. Given the
book’s pragmatic bent, it’s thus no sur-
prise that Schmidt refuses to take sides.
Rather than getting involved in what’s
essentially a religious debate, Schmidt
provides the Ruby details you need to
deal with both SOAP and REST, given
that enterprise developers are likely to
see both in practice and rarely have
the luxury of choosing sides.

I n all, I recommend Maik Schmidt’s
Enterprise Integration with Ruby for

enterprise developers. It leaves me no
doubt that Ruby can be a powerful
ally in enterprise integration wars. The
book is well written, provides useful
examples (based on a hypothetical

flower shop), and explicitly mentions
a variety of the typical pain points
frequently encountered in enterprise
integration projects. If you have a
strong Java/C++ middleware integra-
tion background but don’t know much
about scripting, this book will open
your eyes to the simplicity and pro-
ductivity that dynamic languages
such as Ruby can offer.

References

1. M. Schmidt, Enterprise Integration with

Ruby, Pragmatic Bookshelf, 2006.

2. R.T. Fielding, Architectural Styles and the

Design of Network-Based Software Archi-

tectures, doctoral dissertation, Dept. of Com-

puter Science, Univ. of California, Irvine,

2000.

Steve Vinoski is chief engineer for IONA Tech-

nologies. He’s been involved in middleware

for more than 17 years. Vinoski has helped

develop middleware standards for the Object

Management Group (OMG) and the World

Wide Web Consortium (W3C). Contact him

at vinoski@ieee.org.

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2006 93

Enterprise Integration with Ruby

It leaves me no doubt that Ruby can be a
powerful ally in enterprise integration wars.

