86

SEPTEMBER e OCTOBER 2003

Toward Integration

Do You Know
Where Your

Architecture Is!

Steve Vinoski * IONA Technologies * vinoski@ieee.org

ntil June, and for almost the past five years,
I was IONA’s chief architect. On my first
day, the head of human resources walked
me around the office and introduced me as “our
new senior architect.” Later that afternoon, a new
colleague I had met earlier approached me with
some confusion about my role. “After all,” he said
as he looked at the walls and the ceiling, “the build-
ing looks fine. What are you planning to do to it?”

Life as a chief software architect is rarely fun.
My job was to try to make sure the software
underlying our products was flexible, fast, exten-
sible, robust, consistent, cohesive, current, and
devoid of duplication — and that it incorporated
sound development practices. Sounds pretty obvi-
ous, as all software developers, development man-
agers, and product managers strive for these qual-
ities, right? Unfortunately, our old friend, the
not-invented-here (NIH) syndrome, runs rampant
throughout our industry. Sometimes, even when
you put an architecture in place, managers and
developers can still find ways to ignore it. [wish I
had a dollar for every time I heard a variation of, “I
don’t have time to make this software conform to
our product architecture; I have to get it out the
door now!” Such NIH can be the result of igno-
rance, hubris, or outright defiance, but whatever
the cause, the end result is the same: nonexistent
or incoherent software architecture.

Confusion over architecture, while not uncom-
mon in software development in general, seems
prevalent in middleware. I attribute this to the fact
that middleware systems are typically distributed
and heterogeneous. In general, distributed systems
are difficult to design, implement, debug, and
maintain. When you mix in multiples of hardware
platforms, operating systems, protocols, applica-

Published by the IEEE Computer Society

tions, and vendors, the complexity can rise to the
point where nobody really understands the whole
system. When systems span large enterprises and
comprise multiple technologies and approaches,
their keepers tend to have far more to worry about
than the purity of the system'’s architecture.

Technology as Architecture

I recently visited a customer who told me that his
company’s architecture was the Java Message Ser-
vice (JMS). Note that he didn’t say that his com-
pany’s architecture was messaging-based, or that
its implementation was JMS-based; he just flat-
out said that JMS is its architecture.

I've heard many similar statements over the
years, and they never cease to amaze me. JMS itself
is an interface specification — a Java standard for
accessing and using messaging-oriented middle-
ware (MOM) (see http://java.sun.com/products/
jms/). As an interface standard, it sits firmly in the
design realm. JMS can help realize an architecture,
but by itself; it isn’t one. Additionally, because JMS
specifies the interface, not the implementation,
there’s no guarantee that two different JMS imple-
mentations will interoperate. The customer’s state-
ment was thus even more misguided than it first
appeared: what he really implied was that his com-
pany’s architecture was not just JMS, but was actu-
ally a specific vendor’s JMS implementation.

Treating technology as architecture just asks for
trouble. Like all technologies and specifications,
JMS eventually will fall out of favor, which will
make this customer’s “architecture” need an
upgrade. But given the customer’s penchant for
technology, he is likely to switch to something new
well before JMS heads to the middleware retire-
ment home. Regardless of when he switches, the

1089-7801/03/$17.0092003 IEEE IEEE INTERNET COMPUTING

cost will not be trivial. In this particu-
lar case, the customer probably used
proprietary features and interfaces of
the chosen JMS product. These propri-
etary features are likely to be inter-
mingled with standard JMS features in
the source code. Thus, even if the new
technology vendor were to provide
some sort of tool to help convert the
legacy JMS code to the new system,
the tool’s utility would be limited. By
failing to implement a system archi-
tecture, the customer is looking at a
system rewrite with every move to a
new technology.

Given the cost of redesigning a sys-
tem whenever the underlying technol-
ogy changes, I wonder why designers
paint themselves into such corners.
Conspiracy theory might promote the
idea that they do it for job security, but
most people I've met simply don’t
think that way. A lot of it is due to a
simple lack of abstraction. Some
designers can’t seem to disassociate
the problems far enough away from
the technologies they use to solve
them. Others don’t feel they have the
time to work out what the appropriate
abstractions should be. Indeed, the
“Get out of my way, [have to get it
done yesterday” attitude that I men-
tioned earlier pervades the IT industry.
Did some ancient middleware prophet,
glimpsing a future full of brittle mid-
dleware systems, coin the phrase
“haste makes waste”?

Architecture specifies not only what
the system is, but also what it isn’t.
The more an architecture consists of
abstractions, rules, and constraints
that dictate what the system allows,
while avoiding specific “technologies
du jour,” the better the chance that it
will age gracefully. I've helped create
middleware architecture definitions
that have evolved gracefully, for
example, using two simple practices.
The first is to write detailed definitions
for important system abstractions, or
metaphors, and make sure that all
team members are familiar with them.
The second is to write key internal sys-
tem interfaces in Corba IDL.

Writing at the abstraction level IDL

IEEE INTERNET COMPUTING

Do You Know Where Your Architecture Is?

affords (rather than directly in Java or
C++) lets me reuse interfaces across
languages and express key service
interface aspects without bogging
down in implementation details. Both
practices let any developer with a Web
browser and a chosen editor (preferably
emacs, of course!) comprehend the
architecture’s key elements and rules at
a reasonably high level of abstraction.
Poor abstraction skills can be par-
ticularly troubling in the context of
service-oriented architectures.! Devel-
oping an SOA requires that you first
identify service abstractions, but this
reverses the typical approach of writ-
ing applications first and then writing
the specific services that application
needs. With an SOA, the goal is to put
appropriately abstracted services in
place for reuse by numerous applica-
tions, rather than tightly coupling the
services to a single application.

code only delays the code modifica-
tions that arise from the inevitable
changes in those requirements, thus
prolonging the project and ultimately
raising its cost. Unlike traditional
waterfall-oriented approaches, agile
development methods acknowledge
and embrace change, rather than try-
ing to control or prevent it.

Soon after we adopted XP, a back-
lash arose from various camps. The
most vocal opponents were several
developers with strong design and
abstraction capabilities. They com-
plained that XP threw architecture and
design out the window and replaced it
with “cowboy programming.” They said
that XP allowed developers the freedom
to write whatever they wanted while
providing them with a “get out of jail
free” card — also known as refactoring*
— should the resulting system not work
as expected. Refactoring is intended to

By failing to implement a system architecture,

the customer is looking at a system rewrite with

every move to a new technology.

Coding versus Designing
During my tenure as chief architect, my
employer adopted extreme program-
ming.>* While some developers were
keen for XP’s adoption, we were ulti-
mately led to it when the CEQ, a devel-
oper in a previous life, demanded it.
Given that much of XP centers on prac-
tices similar to the highly successful
iterative development methods I had
introduced to the company several years
earlier, I welcomed the CEQ’s directive.
XP, and other agile software devel-
opment approaches that have followed
it (see www.agilealliance.org/home/),
promote iterative development with a
heavy focus on continuous code
review, system and unit testing, and
customer interaction. The reasoning
behind these approaches is that soft-
ware requirements are usually very
fluid. This fluidity means that trying to
draft requirements before writing any

http://computer.org/internet/

be a methodical way of improving soft-
ware design and implementation with-
out adversely affecting its external
interface or usage, but it’s unfortunate-
ly often simply taken as an excuse to
rewrite and reinvent. While XP certain-
ly doesn’t advocate such nonsense, it
can facilitate the “lone gunslinger”
mentality, especially without strong
communication among teammates. XP
and agile methods count on each team
member knowing what the other is
doing; in fact, the XP practice of pair
programming, where two developers
share a single keyboard and interac-
tively take turns implementing a design
and its tests, is designed in part to
guard against the negative effects of the
cowboy programmer.

The camps that resented our adop-
tion of XP might have preferred if we
had adopted the model-driven archi-
tecture approach.” MDA, which follows

SEPTEMBER ® OCTOBER 2003 87

Toward Integration

in the traditions of structured pro-
gramming and object-oriented pro-
gramming, favors up-front design.
Unlike these approaches, however,
MDA treats code as something that
tools generate from design models,
rather than something that humans
write. The arguments that advocates
make for MDA sound logical enough.
They point out that over the history of
computing, we've advanced from writ-
ing machine code, to writing assembly
language, to eventually writing in
high-level languages such as Java and
C++. With each successive step, the
level of abstraction has also increased.
According to their argument, the nat-
ural progression is away from low-
level programming, where you explic-
itly write code, toward high-level
development through creating models
of the system, leaving the “program-
ming” to code-generation tools. These
efforts include the use of analysis pat-
terns® and metadata to create a plat-
form-independent model (PIM), from
which the tools generate code — called
a platform-specific model (PSM) — for
a specific platform or middleware sys-
tem (such as J2EE, Corba, or MOM).
The PSM not only makes use of pat-
terns specific to the underlying plat-
form, but uses general design patterns
as well.” In some ways, MDA requires
tools that do for software what some
of the tools I used earlier in my career
did for defining and designing modu-
lar integrated circuits.

MDA's reliance on tools (which on
the surface seems like a positive fea-
ture) might have deleterious practical
effects. Middleware users know that
standards help minimize lock-in to
proprietary software and switching
costs between standards-conforming
products. Used correctly, standards
also let organizations formed by merg-
ers or acquisitions swiftly integrate
their software systems, rather than
having to scrap certain systems in their
entirety and replace them. Unfortu-
nately, the tools that MDA requires
easily could shift vendor lock-in and
ubiquity requirements from the mid-
dleware itself to the tools that create

88 SEPTEMBER e OCTOBER 2003

the middleware. It’s true that tool stan-
dards under development might pre-
vent this problem but, generally, it
takes time for such standards to
mature to the point of letting different
vendors’ tools interoperate cleanly.

XP and MDA advocates might not
agree, but one thing the two approach-
es have in common is the idea of a
metaphor. In XP terms, a metaphor is
a word or short phrase that captures a
project’s central idea. XP metaphors
are loosely similar to the names of the
key entities in an MDA model. XP
might use words to express metaphors
whereas MDA uses modeling lan-
guages and diagrams, but the inten-
tions are identical: both want to com-
municate the system architecture’s key
elements as succinctly, yet meaning-
fully, as possible.

Personally, I lean more toward XP
than MDA. XP revolves directly
around the main asset that makes up
a living, evolving software system: the
code itself. Without the code, there is
no system. In my experience, MDA
advocates tend to treat the code as an
afterthought that tools simply gener-
ate once the appropriate models have
been developed. While I believe that
someday we’ll realize this goal of
moving to that higher level of abstrac-
tion, I think it will be a good while
before we get there. Mapping from
one level of abstraction to another can
be difficult in practice.® Practical MDA
advocates admit that it will be years
before it is realistic to code-generate
complex middleware applications that
properly handle complicated issues
such as multithreading, transactions,
load balancing, and automatic
failover. We have a lot of systems to
develop before that day comes, how-
ever, and until MDA is ready for prime
time, I'll stick with the iterations,
shared code, close customer involve-
ment, and refactoring practices that
agile methods like XP promote.

Talk It Through

The two practices I described earlier —
clearly defining system metaphors and
defining interfaces or contracts using

http://computer.org/internet/

an abstract language like IDL — fit both
XP and MDA. Of course your mileage
might vary, but I found that when open
and active communication among
team members surrounds these prac-
tices, this approach easily avoids the
need for wordy architecture documents
or specialized tools to draw and store
Unified Modeling Language diagrams.

As of mid-2003, I am no longer a
chief architect. My new position is
chief engineer of product innovation.
As the title implies, my new job is to
innovate. Such innovation might mean
changes to existing products, or my
work might result in new products —
perhaps based on whole new architec-
tures. Hmmm. Perhaps this means that
I finally get to sit on the other side of
the NIH fence for a change? M

Acknowledgments
Thanks to Doug Lea and Don O'Brien for review-
ing drafts of this column.

References

1. S. Vinoski, “Service Discovery 101,” IEEE
Internet Computing, vol. 7, no. 1, 2003, pp.
69-71.

2. K. Beck, Extreme Programming Explained:
Embrace Change, Addison Wesley Longman,
1999.

3. C. Poole and J.W. Huisman, “Using Extreme
Programming in a Maintenance Environ-
ment,” IEEE Software, vol. 18, no. 6, 2001,
pp. 42-50.

4. M. Fowler, Refactoring: Improving the
Design of Existing Code, Addison Wesley
Longman, 1999.

5. D. Frankel, Model Driven Architecture:
Applying MDA to Enterprise Computing,
John Wiley & Sons, 2003.

6. M. Fowler, Analysis Patterns: Reusable
Object Models, Addison-Wesley, 1997.

7. E.Gamma et al., Design Patterns — Elements
of Reusable Object-Oriented Software, Addi-
son-Wesley, 1995.

8. S.Vinoski, “It’s Just a Mapping Problem,”
IEEE Internet Computing, vol. 7, no. 3, 2003,
pp. 88-90.

Steve Vinoski is chief engineer of product inno-
vation for IONA Technologies. He’s been
involved in middleware for 15 years.
Vinoski is the coauthor of Advanced Corba
Programming with C++ (Addison Wesley
Longman, 1999), and he has helped devel-
op middleware standards for the OMG and
W3C. Contact him at vinoski@ieee.org.

IEEE INTERNET COMPUTING

