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Toward Integration

Demystifying RESTful  
Data Coupling
 
Steve Vinoski • Verivue

L ast time, I explored how one of the con-
straints designed into the Representational 
State Transfer (REST) architectural style 

— the uniform interface — can increase chanc-
es for resource and service reuse. Compared to 
approaches such as Web services and the Web 
Services Description Language (WSDL), which 
promote specialization for each service interface, 
the uniform-interface constraint reduces client-
server coupling and helps minimize gratuitous 
differences in interface and method semantics 
across disparate resources. REST isn’t a silver 
bullet, but its flexibility and relative simplicity 
make it highly applicable not only to Web-scale 
systems but also to a wide variety of enterprise 
integration problems.

Developers who favor technologies that pro-
mote interface specialization typically raise 
two specif ic objections to the REST uniform- 
interface constraint. One is that different re-
sources should each have specific interfaces 
and methods that more accurately reflect their 
precise functionality. This is rooted in the fact 
that most programming languages (especially 
those that are object-oriented) promote the de-
velopment of specific interfaces, procedures, 
and methods for different software artifacts. 
This notion is so ingrained in many develop-
ers’ minds that they consider it counterintuitive 
to apply a uniform general-purpose interface to 
anything — even to the heterogeneous services 
and resources found in a typical distributed sys-
tem. Yet, those who raise this objection fail to 
properly consider the effects of networking and 
distribution. The REST architectural style spe-
cifically imposes constraints that help address 
problems typical of distributed systems, such 
as latency and state management. Among other 
things, the uniform-interface constraint helps 

enable visibility into client-server interactions, 
making it easier for developers to apply critical 
distributed systems concepts such as proxying, 
caching, intermediation, and monitoring.

The other objection to the concept of a uni-
form interface is that it merely shifts all cou-
pling issues and other problems to the data 
exchanged between client and server. Detrac-
tors claim that, because of this shift, the uni-
form interface yields no overall benefits. I don’t 
believe that’s correct because it’s based on the 
invalid assumption that the data exchanged in 
a REST system is just like the data exchanged 
in systems such as Web services and Corba, 
which require interface specialization. As 
we’ll see, the purpose and form of exchanged 
data in REST differ significantly from those of 
other systems.

Specialized Data Issues
Service developers use languages such as the 
Corba Interface Definition Language and WSDL 
to define not only specialized service interfaces 
and methods but also the specialized data types 
passed through them. This isn’t surprising: be-
cause these languages are strongly based on 
Remote Procedure Call (RPC), the definitions 
they encourage greatly resemble typical pro-
gramming language method definitions. This 
resemblance means that such interface defini-
tion languages usually include constructs for 
defining structured types, which are similar 
in concept to C structs — essentially, ordered 
groupings of other data types, including other 
constructed types, with a theoretically unlim-
ited level of possible nestings. This implies that 
such types can be arbitrarily complex. A com-
mon example of a simple specialized construct-
ed type is an Employee type, which typically 
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describes an employee’s name, loca-
tion, phone number, ID, and other 
relevant information.

In local applications written in 
typical enterprise languages such as 
Java and C++, defining specialized 
constructed types is not only normal, 
it’s necessary. Without such types, 
passing groupings of related hetero-
geneous data to functions within the 
application would be overly compli-
cated, perhaps prohibitively so. Keep 
in mind that constructed types aren’t 
limited to pure data; Java and C++ 
classes are also constructed types, 
despite the fact that their data fields 
are usually private and accessed only 
through public methods.

Consider the coupling that these 
constructed types induce within a lo-
cal application between a caller and 
a function or method it calls. Assum-
ing a language like Java or C++, both 
the caller and the called method are 
compiled against the same definition 
of the constructed types they share. 
The caller and called method are also 
either compiled together into the same 
application or are strongly connect-
ed via dynamic loading. Either way, 
changing the constructed type’s defi-
nition means recompiling both the 
caller and the called method. This en-
sures that both understand the same 
“shape” of the constructed type so 
that they can operate on it properly.

For local applications, this high 
level of coupling around constructed 
data types isn’t much of a problem. 
Normally, the application’s build sys-
tem ensures that all affected files, 
modules, and packages are recom-
piled if a developer changes a type’s 
definition. When a new version of the 
application is released, it’s all built 
together and released as a whole, 
thus ensuring consistency of the 
constructed type definitions used 
across the system. I’m sure, though, 
that many of us have experienced the 
mysterious errors that result from 
missed recompilations, in which two 
or more linked pieces of code have 

different understandings of a con-
structed type’s layout. Such errors 
are sometimes pretty hard to debug.

The coupling story around con-
structed types for distributed appli-
cations is, however, quite different: 
the larger the application’s scale, the 
less likely that the individual appli-
cations involved were developed by 
the same team of developers or even 
by different teams in the same loca-
tion. Moreover, there’s no guarantee 
that the individual applications were 
developed at the same time, released 
on the same schedule, built on the 
same versions of the underlying 
software, or written in the same pro-
gramming language. Yet, when the 
individual applications share an un-
derstanding of one or more special-
ized constructed data types, their 
level of coupling increases, and their 
independence is reduced. Depending 
on how such specialized data types 
are managed over time in terms of 
changes and versioning, their very 
existence in some distributed ap-
plications can be enough to prevent 
them from being used by any devel-
oper who isn’t directly connected to 
the development team that manages 
the data types.

Still another problem with special-
ized constructed types in distributed 
systems is, ironically, that the types 
themselves are defined independent-
ly. We’ve all heard stories about or 
experienced firsthand the problems 
that can arise when independent ap-
plications developed within two dif-
ferent enterprises must be integrated 
because of mergers or acquisitions. 
Each application might have a differ-
ent Employee definition, for example, 
thus forcing interactions involving 
employee data between the applica-
tions to rely on data transformation 
as the data passes through; the alter-
native is to rework the applications 
so that they share a specialized Em-
ployee definition.

If a distributed system comprises 
many independently developed ap-

plications, changing the definition 
of any specialized data type shared 
across those applications is fraught 
with problems. It ultimately boils 
down to independence versus cen-
tralized control. If you want your 
service to be useful for independent-
ly developed applications — whether 
you’re working at Web scale or just 
within an enterprise — maintaining 
central control and coordination over 
your specialized constructed data 
type definitions for all applications 
that use them might be impossible.

Four Interface Constraints
The REST uniform-interface con-
straint isn’t limited only to a set of 
operations such as HTTP’s verb set. 
Four other key constraints support 
this constraint:1

resource identification;
resource manipulation through 
representations;
self-descriptive messages; and
hypermedia as the engine of ap-
plication state.

Uniform resource identifiers (URIs) 
satisfy the requirements for con-
straint 1, so we won’t focus on it other 
than to say that URIs are also critical 
for constraint 4. The other three con-
straints deserve more explanation.

For constraint 2, the name “rep-
resentational state transfer” refers 
specifically to the fact that REST-
ful clients and servers interact by 
exchanging resource state represen-
tations. For example, a Web client 
performing an HTTP GET on a dy-
namic Web resource representing an 
employee might receive the current 
state of the employee details resource 
in the form of an HTML document. A 
client might also replace the state of 
the employee details by using PUT to 
send a new state representation, also 
in HTML form.

Several aspects of constraint 2 
are related to data coupling between 
client and server. First, sending re-

1.
2.

3.
4.
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source representations over the 
network seems to fly in the face of 
accepted principles of information 
hiding because it appears to require 
us to expose internal resource de-
tails. Fortunately, this isn’t the case; 
a representation needn’t reveal any 
details of the resource’s implementa-
tion — for example, when you fetch 
an HTML Web page, you might get 
an HTML document read directly 
from the server’s disk, or you might 
get the result from a program that 
constructed the HTML dynamically, 
perhaps by retrieving data from an-
other service or a database. From a 
pure data-coupling perspective, ex-
changing resource representations 
in this fashion is no better or worse 
than data exchange in Web services 
or Corba.

Resource representations do, 
however, help alleviate some data-
coupling problems because they’re 
not tied to the underlying protocol. 
In REST, exchanged data are de-
scribed using media types, and any 
given resource is free to represent its 
state using its choice of one or more 
media types. An HTTP client indi-
cates desired representation formats 
by sending an Accept header, and 
a resource indicates the representa-
tion format of its response with a 
Content-type header. Contrast this 
data format flexibility with Corba, 
for example, in which exchanged 
data are defined in IDL, and mar-
shaled in the standard Common 
Data Representation (CDR) format 
of the Object Management Group’s 
standard Internet Inter-ORB Pro-
tocol (IIOP). For Web services and 
SOAP, data are normally exchanged 
in XML format. A REST resource’s 
ability to handle state representa-
tions in different formats makes it 
easier to support a wider variety 
of client applications. It lets clients 
minimize their data coupling to the 
resource by choosing which repre-
sentation is best for them.

Constraint 3 simply states that 

resource representations are self- 
describing, but this seemingly simple 
concept is quite important in REST. 
Because resource representation for-
mats can vary, messages must indi-
cate what format they carry. In HTTP, 
message payloads are identified us-
ing standard Internet Assigned Num-
bers Authority (IANA) Multipurpose 
Internet Mail Extensions (MIME) 
media types. HTML messages, for 
example, typically have the text/
html MIME type, and JavaScript ob-
ject notation (JSON) messages have 
the application/json MIME type. 
Developers are finding Atom-related 
MIME types, such as application/
atomsvc+xml, particularly appeal-

ing for use in a wide variety of Web 
applications because they support 
resource syndication, publication, 
and editing (see RFCs 4287 and 5023 
for more details2,3). For lists of all 
the registered MIME media types, 
visit the IANA site (www.iana.
org/assignments/media-types/).

The fact that IANA MIME media 
types are globally standard data def-
initions helps reduce client-server 
data coupling. Independent parties 
can retrieve from the IANA site the 
details of any MIME media type they 
wish to support, and they can imple-
ment support for it in any language. 
As a result, numerous libraries for 
handling MIME types already exist 
for various programming languages. 
Rather than having to build special-
ized ad hoc code into your application 
to handle application-specific WSDL 
or IDL data types, your RESTful ap-
plications can reuse the appropriate 

libraries to handle the MIME types 
they work with. The fact that IANA 
controls these media type definitions 
means that they’ll never change, 
which eliminates a lot of versioning-
related churn and uncertainty.

Constraint 4 relates not so much 
to representation format as to rep-
resentation content. In RESTful sys-
tems, applications interact with one 
or more resources — they, rather than 
the resources, maintain application 
state. Resource representations con-
tain hyperlinks to help applications 
know how to perform application state 
transitions. For example, a resource 
designating a list of employees might 
return a representation containing a 

list of hyperlinks, each referring to a 
separate resource for each employee 
in the list. An application looking 
for information about a given em-
ployee need only follow the relevant 
hyperlinks using data and metadata 
within the representation as a guide. 
This approach helps with the client-
server coupling problem by making 
application state transitions explicit 
within state representations, rather 
than implicitly hiding them behind 
and within collections of interface-
specific methods. Keeping applica-
tion state in the client rather than on 
the server can also help significantly 
with server scalability.

No Panacea
Is REST’s approach to dealing with data 
coupling some sort of magic? Of course 
not. Although the REST constraints 
explored here can definitely help re-
duce data coupling when compared to 

This approach helps with the coupling problem 
by making application state transitions explicit 
within state representations, rather than 
implicitly hiding them.



Toward Integration

90 		  www.computer.org/internet/� IEEE INTERNET COMPUTING

interface specialization approaches, 
there are still issues to watch for. For 
instance, sending representations typ-
ically means sending more data with 
each call than in RPC-oriented sys-
tems. Even though RESTful systems 
are often simpler and more efficient 
than their non-REST counterparts, 
this extra data overhead can some-
times cause efficiency problems. 
Another issue is that MIME types 
aren’t a panacea. Consider the 
MIME type application/xml, used 
to indicate that a payload is some sort 
of XML document. Because of XML’s 
extensibility, even if an application 
understands this MIME type, there’s 
no guarantee that it will fully under-
stand the XML payload. Still anoth-
er issue is that there’s no guarantee 
that a MIME type even exists for the 
representations you want to send or 
receive. Anyone is free to define a 
MIME type and register it, of course, 
but this takes time and effort that 
many people are unwilling or unable 
to expend. Furthermore, MIME types 
aren’t the only game in town; some 
Web application developers prefer to 

define their data primarily in HTML or 
XHTML for browser viewing, but in-
tersperse it with microformats (www. 
microformats.org) that allow applica-
tions to more easily interpret the data 
as well.

U ltimately, reducing interface and 
data coupling for your distributed 

applications isn’t easy. RPC-oriented 
technologies such as Web services 
are intended primarily to extend 
programming language idioms and 
patterns across the network. By do-
ing so, they hope to make the devel-
oper’s job easier; unfortunately, this 
comes at the cost of significantly 
reduced scale, greater client-server 
coupling, and more difficult sys-
tem modification and maintenance. 
The REST architectural style, on the 
other hand, makes very specific and 
highly useful trade-offs meticu-
lously chosen to enhance the scal-
ability, extensibility, manageability, 
and maintainability of distributed 
systems and applications. Yet, in my 
experience, applying REST actually 

requires less of a development ef-
fort. If you’re building distributed 
applications, I firmly believe that 
by studying REST and adopting it 
wherever appropriate, you can sig-
nificantly improve not only the ap-
plications you develop but also your 
own distributed system and integra-
tion development skills.�
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