
MARCH/APRIL 2008	 1089-7801/08/$25.00 © 2008 IEEE	 Published by the IEEE Computer Society� 87

Toward Integration

Demystifying RESTful
Data Coupling

Steve Vinoski • Verivue

L ast time, I explored how one of the con-
straints designed into the Representational
State Transfer (REST) architectural style

— the uniform interface — can increase chanc-
es for resource and service reuse. Compared to
approaches such as Web services and the Web
Services Description Language (WSDL), which
promote specialization for each service interface,
the uniform-interface constraint reduces client-
server coupling and helps minimize gratuitous
differences in interface and method semantics
across disparate resources. REST isn’t a silver
bullet, but its flexibility and relative simplicity
make it highly applicable not only to Web-scale
systems but also to a wide variety of enterprise
integration problems.

Developers who favor technologies that pro-
mote interface specialization typically raise
two specif ic objections to the REST uniform-
interface constraint. One is that different re-
sources should each have specific interfaces
and methods that more accurately reflect their
precise functionality. This is rooted in the fact
that most programming languages (especially
those that are object-oriented) promote the de-
velopment of specific interfaces, procedures,
and methods for different software artifacts.
This notion is so ingrained in many develop-
ers’ minds that they consider it counterintuitive
to apply a uniform general-purpose interface to
anything — even to the heterogeneous services
and resources found in a typical distributed sys-
tem. Yet, those who raise this objection fail to
properly consider the effects of networking and
distribution. The REST architectural style spe-
cifically imposes constraints that help address
problems typical of distributed systems, such
as latency and state management. Among other
things, the uniform-interface constraint helps

enable visibility into client-server interactions,
making it easier for developers to apply critical
distributed systems concepts such as proxying,
caching, intermediation, and monitoring.

The other objection to the concept of a uni-
form interface is that it merely shifts all cou-
pling issues and other problems to the data
exchanged between client and server. Detrac-
tors claim that, because of this shift, the uni-
form interface yields no overall benefits. I don’t
believe that’s correct because it’s based on the
invalid assumption that the data exchanged in
a REST system is just like the data exchanged
in systems such as Web services and Corba,
which require interface specialization. As
we’ll see, the purpose and form of exchanged
data in REST differ significantly from those of
other systems.

Specialized Data Issues
Service developers use languages such as the
Corba Interface Definition Language and WSDL
to define not only specialized service interfaces
and methods but also the specialized data types
passed through them. This isn’t surprising: be-
cause these languages are strongly based on
Remote Procedure Call (RPC), the definitions
they encourage greatly resemble typical pro-
gramming language method definitions. This
resemblance means that such interface defini-
tion languages usually include constructs for
defining structured types, which are similar
in concept to C structs — essentially, ordered
groupings of other data types, including other
constructed types, with a theoretically unlim-
ited level of possible nestings. This implies that
such types can be arbitrarily complex. A com-
mon example of a simple specialized construct-
ed type is an Employee type, which typically

Toward Integration

88 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

describes an employee’s name, loca-
tion, phone number, ID, and other
relevant information.

In local applications written in
typical enterprise languages such as
Java and C++, defining specialized
constructed types is not only normal,
it’s necessary. Without such types,
passing groupings of related hetero-
geneous data to functions within the
application would be overly compli-
cated, perhaps prohibitively so. Keep
in mind that constructed types aren’t
limited to pure data; Java and C++
classes are also constructed types,
despite the fact that their data fields
are usually private and accessed only
through public methods.

Consider the coupling that these
constructed types induce within a lo-
cal application between a caller and
a function or method it calls. Assum-
ing a language like Java or C++, both
the caller and the called method are
compiled against the same definition
of the constructed types they share.
The caller and called method are also
either compiled together into the same
application or are strongly connect-
ed via dynamic loading. Either way,
changing the constructed type’s defi-
nition means recompiling both the
caller and the called method. This en-
sures that both understand the same
“shape” of the constructed type so
that they can operate on it properly.

For local applications, this high
level of coupling around constructed
data types isn’t much of a problem.
Normally, the application’s build sys-
tem ensures that all affected files,
modules, and packages are recom-
piled if a developer changes a type’s
definition. When a new version of the
application is released, it’s all built
together and released as a whole,
thus ensuring consistency of the
constructed type definitions used
across the system. I’m sure, though,
that many of us have experienced the
mysterious errors that result from
missed recompilations, in which two
or more linked pieces of code have

different understandings of a con-
structed type’s layout. Such errors
are sometimes pretty hard to debug.

The coupling story around con-
structed types for distributed appli-
cations is, however, quite different:
the larger the application’s scale, the
less likely that the individual appli-
cations involved were developed by
the same team of developers or even
by different teams in the same loca-
tion. Moreover, there’s no guarantee
that the individual applications were
developed at the same time, released
on the same schedule, built on the
same versions of the underlying
software, or written in the same pro-
gramming language. Yet, when the
individual applications share an un-
derstanding of one or more special-
ized constructed data types, their
level of coupling increases, and their
independence is reduced. Depending
on how such specialized data types
are managed over time in terms of
changes and versioning, their very
existence in some distributed ap-
plications can be enough to prevent
them from being used by any devel-
oper who isn’t directly connected to
the development team that manages
the data types.

Still another problem with special-
ized constructed types in distributed
systems is, ironically, that the types
themselves are defined independent-
ly. We’ve all heard stories about or
experienced firsthand the problems
that can arise when independent ap-
plications developed within two dif-
ferent enterprises must be integrated
because of mergers or acquisitions.
Each application might have a differ-
ent Employee definition, for example,
thus forcing interactions involving
employee data between the applica-
tions to rely on data transformation
as the data passes through; the alter-
native is to rework the applications
so that they share a specialized Em-
ployee definition.

If a distributed system comprises
many independently developed ap-

plications, changing the definition
of any specialized data type shared
across those applications is fraught
with problems. It ultimately boils
down to independence versus cen-
tralized control. If you want your
service to be useful for independent-
ly developed applications — whether
you’re working at Web scale or just
within an enterprise — maintaining
central control and coordination over
your specialized constructed data
type definitions for all applications
that use them might be impossible.

Four Interface Constraints
The REST uniform-interface con-
straint isn’t limited only to a set of
operations such as HTTP’s verb set.
Four other key constraints support
this constraint:1

resource identification;
resource manipulation through
representations;
self-descriptive messages; and
hypermedia as the engine of ap-
plication state.

Uniform resource identifiers (URIs)
satisfy the requirements for con-
straint 1, so we won’t focus on it other
than to say that URIs are also critical
for constraint 4. The other three con-
straints deserve more explanation.

For constraint 2, the name “rep-
resentational state transfer” refers
specifically to the fact that REST-
ful clients and servers interact by
exchanging resource state represen-
tations. For example, a Web client
performing an HTTP GET on a dy-
namic Web resource representing an
employee might receive the current
state of the employee details resource
in the form of an HTML document. A
client might also replace the state of
the employee details by using PUT to
send a new state representation, also
in HTML form.

Several aspects of constraint 2
are related to data coupling between
client and server. First, sending re-

1.
2.

3.
4.

MARCH/APRIL 2008� 89

RESTful Data

source representations over the
network seems to fly in the face of
accepted principles of information
hiding because it appears to require
us to expose internal resource de-
tails. Fortunately, this isn’t the case;
a representation needn’t reveal any
details of the resource’s implementa-
tion — for example, when you fetch
an HTML Web page, you might get
an HTML document read directly
from the server’s disk, or you might
get the result from a program that
constructed the HTML dynamically,
perhaps by retrieving data from an-
other service or a database. From a
pure data-coupling perspective, ex-
changing resource representations
in this fashion is no better or worse
than data exchange in Web services
or Corba.

Resource representations do,
however, help alleviate some data-
coupling problems because they’re
not tied to the underlying protocol.
In REST, exchanged data are de-
scribed using media types, and any
given resource is free to represent its
state using its choice of one or more
media types. An HTTP client indi-
cates desired representation formats
by sending an Accept header, and
a resource indicates the representa-
tion format of its response with a
Content-type header. Contrast this
data format flexibility with Corba,
for example, in which exchanged
data are defined in IDL, and mar-
shaled in the standard Common
Data Representation (CDR) format
of the Object Management Group’s
standard Internet Inter-ORB Pro-
tocol (IIOP). For Web services and
SOAP, data are normally exchanged
in XML format. A REST resource’s
ability to handle state representa-
tions in different formats makes it
easier to support a wider variety
of client applications. It lets clients
minimize their data coupling to the
resource by choosing which repre-
sentation is best for them.

Constraint 3 simply states that

resource representations are self-
describing, but this seemingly simple
concept is quite important in REST.
Because resource representation for-
mats can vary, messages must indi-
cate what format they carry. In HTTP,
message payloads are identified us-
ing standard Internet Assigned Num-
bers Authority (IANA) Multipurpose
Internet Mail Extensions (MIME)
media types. HTML messages, for
example, typically have the text/
html MIME type, and JavaScript ob-
ject notation (JSON) messages have
the application/json MIME type.
Developers are finding Atom-related
MIME types, such as application/
atomsvc+xml, particularly appeal-

ing for use in a wide variety of Web
applications because they support
resource syndication, publication,
and editing (see RFCs 4287 and 5023
for more details2,3). For lists of all
the registered MIME media types,
visit the IANA site (www.iana.
org/assignments/media-types/).

The fact that IANA MIME media
types are globally standard data def-
initions helps reduce client-server
data coupling. Independent parties
can retrieve from the IANA site the
details of any MIME media type they
wish to support, and they can imple-
ment support for it in any language.
As a result, numerous libraries for
handling MIME types already exist
for various programming languages.
Rather than having to build special-
ized ad hoc code into your application
to handle application-specific WSDL
or IDL data types, your RESTful ap-
plications can reuse the appropriate

libraries to handle the MIME types
they work with. The fact that IANA
controls these media type definitions
means that they’ll never change,
which eliminates a lot of versioning-
related churn and uncertainty.

Constraint 4 relates not so much
to representation format as to rep-
resentation content. In RESTful sys-
tems, applications interact with one
or more resources — they, rather than
the resources, maintain application
state. Resource representations con-
tain hyperlinks to help applications
know how to perform application state
transitions. For example, a resource
designating a list of employees might
return a representation containing a

list of hyperlinks, each referring to a
separate resource for each employee
in the list. An application looking
for information about a given em-
ployee need only follow the relevant
hyperlinks using data and metadata
within the representation as a guide.
This approach helps with the client-
server coupling problem by making
application state transitions explicit
within state representations, rather
than implicitly hiding them behind
and within collections of interface-
specific methods. Keeping applica-
tion state in the client rather than on
the server can also help significantly
with server scalability.

No Panacea
Is REST’s approach to dealing with data
coupling some sort of magic? Of course
not. Although the REST constraints
explored here can definitely help re-
duce data coupling when compared to

This approach helps with the coupling problem
by making application state transitions explicit
within state representations, rather than
implicitly hiding them.

Toward Integration

90 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

interface specialization approaches,
there are still issues to watch for. For
instance, sending representations typ-
ically means sending more data with
each call than in RPC-oriented sys-
tems. Even though RESTful systems
are often simpler and more efficient
than their non-REST counterparts,
this extra data overhead can some-
times cause efficiency problems.
Another issue is that MIME types
aren’t a panacea. Consider the
MIME type application/xml, used
to indicate that a payload is some sort
of XML document. Because of XML’s
extensibility, even if an application
understands this MIME type, there’s
no guarantee that it will fully under-
stand the XML payload. Still anoth-
er issue is that there’s no guarantee
that a MIME type even exists for the
representations you want to send or
receive. Anyone is free to define a
MIME type and register it, of course,
but this takes time and effort that
many people are unwilling or unable
to expend. Furthermore, MIME types
aren’t the only game in town; some
Web application developers prefer to

define their data primarily in HTML or
XHTML for browser viewing, but in-
tersperse it with microformats (www.
microformats.org) that allow applica-
tions to more easily interpret the data
as well.

U ltimately, reducing interface and
data coupling for your distributed

applications isn’t easy. RPC-oriented
technologies such as Web services
are intended primarily to extend
programming language idioms and
patterns across the network. By do-
ing so, they hope to make the devel-
oper’s job easier; unfortunately, this
comes at the cost of significantly
reduced scale, greater client-server
coupling, and more difficult sys-
tem modification and maintenance.
The REST architectural style, on the
other hand, makes very specific and
highly useful trade-offs meticu-
lously chosen to enhance the scal-
ability, extensibility, manageability,
and maintainability of distributed
systems and applications. Yet, in my
experience, applying REST actually

requires less of a development ef-
fort. If you’re building distributed
applications, I firmly believe that
by studying REST and adopting it
wherever appropriate, you can sig-
nificantly improve not only the ap-
plications you develop but also your
own distributed system and integra-
tion development skills.�

References
R.T. Fielding, Architectural Styles and

the Design of Network-Based Software

Architectures, doctoral dissertation,

Dept. of Computer Science, Univ. of Ca-

lif., Irvine, 2000.

M. Nottingham, The Atom Syndication

Format, IETF recommendation, Dec.

2005; www.ietf.org/rfc/rfc4287.txt.

J. Gregorio and B. de hÓra, The Atom Pub-

lishing Protocol, IETF recommendation,

Oct. 2007; www.ietf.org/rfc/rfc5023.

Steve Vinoski is a member of the technical

staff at Verivue. He is a senior member of

the IEEE and a member of the ACM. You

can read his blog at http://steve.vinoski.

net/blog/ and contact him at vinoski@

ieee.org.

1.

2.

3.

Looking for best practices that

• automate repetitive software tasks
• can phase into an existing process
• work for IT and custom projects?

then try ADP
developer tested, research validated

see www.wiley.com/ieeecs for your
15% CS member discount
ISBN 978-0-470-04212-0, $89.95

Coming soon!
UCLA Extension course 5-7 May 2008
see www.uclaextension.edu/shortcourses

