
Toward Integration

Dark Matter Revisited

Steve Vinoski • IONA Technologies

D istributed systems, middleware, and integra-
tion are just plain hard. The seemingly
intractable difficulties permeating these areas

drive our industry to continually seek out easier
ways to build such systems. During the past 20
years, we’ve produced myriad toolkits aimed at
simplifying distributed programming and integra-
tion, including many proprietary or homegrown-
based approaches and many others based on well-
known approaches such as Distributed Computing
Environment (DCE), Corba, J2EE, and Web ser-
vices. Regardless of the underlying technology,
each approach seems to start out being simple
(compared to what went before it); as each
matures, however, it seems to wind up just as com-
plicated as the approach it was designed to dis-
place, if not more so.

It’s not only distributed computing and integra-
tion’s inherent difficulties that make these tool-kits
complicated. Perhaps ironically, success also makes
them more complex. As a toolkit succeeds and
grows in popularity, its market grows ever wider,
resulting in more and more requirements for it to
fulfill. Added requirements typically mean added
functionality, which in turn causes the toolkit to
grow in size and complexity. Even if the toolkit fol-
lows proper architecture and design — so that it
grows without turning into a monolithic monstros-
ity — its sheer size or “surface area” can send poten-
tial users scurrying for something simpler.

Dynamic Languages
Naturally, the programming language that a distrib-
uted computing toolkit supports has a lot to do with
its perceived ease of use. Toolkits written for C++,
for example, are often criticized as being too hard to
use — mainly due to the perceived difficulty of using
the C++ language in general. Those written for Java
are deemed somewhat easier to use — though not
much, mainly because of the many classes, methods,

and packages a developer must typically understand
to write any nontrivial application. Interestingly
enough, these perceptions appear wholly dependent
on the programming languages and are seemingly
independent of the particular distributed systems
technology underneath the toolkit.

Could it be that these mainstream programming
languages are just wrong for many distributed com-
puting and integration applications? Are dynamic
programming languages better suited for the job?
Having spent quite a bit of my career writing dis-
tributed systems in C++, Java, and C, perhaps I ask
these questions only because the grass always looks
greener on the other side of the fence.

However, I’ve also spent quite a bit of time
writing integration programs in dynamic lan-
guages, most often Perl. For example, one of the
first things I did when I joined IONA more than
seven years ago was to write a Perl script that hid
the details of our underlying software configura-
tion management (SCM), allowing new developers
to easily build and test the new software we were
working on. At the time, I figured the script was
just temporary, but we still use it today (and my,
how it’s grown). Another early task was to devel-
op a Web-based bug-tracking system in Perl,
which was integrated with a text-based tracking
system stored in our SCM system.

Today, we frequently use WikiWikiWebs1 for
collaboration across our multisite engineering
projects, and the implementation we typically use,
called MoinMoin (http://moin.sourceforge.net), is
written in Python. One of my favorite programs of
late, if not of all time, is the SpamBayes spam fil-
ter (http://spambayes.sourceforge.net), which is
also written in Python and can be integrated into
Outlook as a plug-in. The blogging software I use,
called MovableType (www.movabletype.org), is
written in Perl, as is the spam-prevention applica-
tion I use with it.

IEEE INTERNET COMPUTING 1089-7801/04/$20.00 © 2004 IEEE Published by the IEEE Computer Society JULY • AUGUST 2004 81

As I noted nearly two years ago in
this column, many distributed integra-
tion applications, including much of the
software running the Web, are based on
“middleware dark matter,”2 which con-
sists of dynamic languages like Python,
Perl, and PHP. Not only is this phenom-
enon still true today but, based on the
vast numbers of open-source projects
revolving around these languages, it
seems to still be rapidly growing.

The power of typical contemporary
computers, with multi-GHz CPU
speeds and hundreds and thousands of
Mbytes of RAM not uncommon, exe-
cutes applications based on modern
dynamic languages quickly and effi-
ciently. I also believe the research and
experimentation over the past several
years aimed at improving Java virtual

machines and bytecode interpretation
has drastically improved dynamic lan-
guages because, like Java, they tend to
be interpreted or bytecode-driven.

Combined with their speed and effi-
ciency, today’s dynamic languages’
flexibility and ease of use are hard to
beat. This appears especially true for
distributed systems and integration sys-
tems, which seem to undergo changes
more frequently than other types of
software and thus require rapid appli-
cation development capabilities. More-
over, dynamic languages’ popularity
means that you can readily find an
already-written open-source dynamic
language module or component on the
Web to perform almost any task.

In the rest of this column, I survey
three dynamic language distributed
computing systems whose power and
utility might surprise you.

Twisted
Twisted (http://twistedmatrix.com/
products/twisted) is an extensive
Python-based framework for writing
network applications. In days gone by,
dynamic-language network-program-
ming toolkits were seldom as full-fea-
tured as their mainstream programming
language counterparts such as DCE and
Corba. In fact, it seemed they were
rarely much more than thin layers over
sockets. With Twisted, however, this is
definitely no longer the case. In fact,
even describing Twisted as “extensive”
might not do it justice, given the num-
ber and variety of features, functions,
and applications it provides.

The Twisted framework represents
a fairly complete architecture for net-
worked applications. It includes:

• a Web server, DNS server, Internet
Relay Chat (IRC) server, mail serv-
er, and secure shell (SSH);

• enterprise capabilities (including
user authentication, a relational
database interface, and object-
persistence support);

• a distributed-object broker (includ-
ing communication, serialization,
and marshaling support);

• protocol and transport abstrac-
tions, with a variety of concrete
implementations available under-
neath (including HTTP, Simple
Mail Transfer Protocol (SMTP),
IRC, DNS, SSH, Telnet, POP3, TCP,
Transport Layer Security (TLS),
and UDP;

• event loops that are pluggable and
thus replaceable, allowing applica-
tions to take advantage of special
features available on the underly-

ing platform (such as kqueue3 on
FreeBSD); and

• support for integrating several pop-
ular Python GUI toolkits, such as
Tkinter (the standard Python GUI;
www.python.org/topics/tkinter/) and
wxPython (www.wxpython.org/).

Twisted’s developers apparently sub-
scribe to the same distributed-services
philosophy that I do: services should be
strongly separated from the protocols,
wire formats, and transports used to
communicate with them.4 This lets
applications consume services over
multiple protocols, wire formats, and
transports, and it also allows services to
evolve gracefully and independently of
the particular technologies used to com-
municate with them. Twisted’s broad
protocol and service coverage makes it
relatively simple for developers to pro-
vide their services simultaneously over
a variety of communication approaches.

The Twisted documentation includes
a lengthy tutorial based on a “finger”
server (used to find information about
other computer users), which shows the
server’s evolution from something very
simple to a full-featured service. The
first couple of versions of the finger
server essentially do nothing but show
the basics of using Twisted’s reactor-
based event loops. The next versions are
augmented to include Twisted’s proto-
col factories and protocols, allowing
them to function as actual finger
servers. After that, the tutorial shows
the use of deferred objects, which are
used extensively in Twisted’s applica-
tions to avoid blocking. Given that
Twisted is event-based and single-
threaded, blocking must be avoided.
Deferred objects, which resemble
futures (objects that encapsulate the
retrieval or computation of underlying
values), neatly facilitate nonblocking
behavior by encapsulating application
callbacks that are invoked once data
actually becomes available.

The tutorial then proceeds to evolve
the finger server into a full-fledged ser-
vice. It shows multiple versions of the

82 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

Even describing Twisted as “extensive”
might not do it justice,given the number
and variety of features, functions,and
applications it provides.

finger server that each obtain their user
information from different data
sources, such as from local Python data
structure, running the finger com-
mand locally on the same computer
and capturing its output, or obtaining
the information from a Web page. By
encapsulating these implementation
details in protocol factories, the devel-
oper enables each implementation to
reuse the same protocol implementa-
tion. The tutorial then extends this
notion to show how the finger server
can make its information accessible not
only over the standard finger protocol
on port 79, but also simultaneously via
the Web, XML-RPC (remote procedure
call; www.xmlrpc.com), and IRC.

To cover all of Twisted’s facilities
to any depth would require the space
of multiple columns, but I hope this
brief description is enough to entice
you to look into it further.

PEAK
The Python Enterprise Application Kit
(http://peak.telecommunity.com), which
is currently still under development, is
intended to let developers assemble
enterprise applications from compo-
nents. It essentially provides architec-
tural and infrastructure support for
Python applications, similar to that
which J2EE provides for Java applica-
tions. PEAK appears to have descended
from Zope (www.zope.org), a popular
open-source Web application server
written in Python, so it’s not unreason-
able to expect that it’s essentially a
next-generation application kit that will
incorporate many hard-won lessons
from real-world Zope deployments.

PEAK’s developers believe their
system will be easier, faster, and more
scalable than J2EE, which they say is
overly large and complex, resulting in
resource-intensive implementations;
moreover, they state that the Java
language isn’t particularly suited to
rapid application development (and I
agree on all counts). The general view
of Python, on the other hand, is that
it’s small, lean, and extraordinarily

well-suited to rapid application devel-
opment. Based on their experiences
with Zope and other Python-based
enterprise-quality tools, the PEAK
developers believe a Python-based
approach to component-based appli-
cations will result in systems that are
simpler, faster, and easier to install,
manage, and maintain than anything
similar in J2EE.

Today, PEAK appears to focus
mostly on allowing developers to cre-
ate applications from components. For
example, it allows components to be
named, discovered by name, config-
ured, and bound together into applica-
tions. It uses a novel system called
PyProtocols (http://peak.telecommuni-
ty.com/PyProtocols.html) to adapt one
interface to another, which is impor-

tant for component assembly. It even
supports transitive adaptation.

In the future, PEAK will support
other areas such as storage, transac-
tions, logging, and other typical appli-
cation features. Given that the current
naming, configuration, and binding
capabilities require only 4,000 lines of
Python, the broader set of features will
likely be equally as compact, thus
standing a good chance of meeting the
PEAK developers’ goals of outdoing
J2EE in terms of performance and
scalability. Stay tuned.

SlimServer
Unlike Twisted or PEAK, SlimServer is
not a general-purpose dynamic-lan-
guage application framework. Rather,
it’s a network music server written in
Perl that supports the Slim Devices
Slimp3 and Squeezebox music players

(www.slimdevices.com). I own a
Squeezebox, which lets me use my
home wireless network to access my
music collection (stored in my iTunes
library on my iMac), and play it over
my home audio system. The Squeeze-
box is a small hardware device that
plugs into my home receiver just like
any other audio device. I can control
the Squeezebox via a standard remote
control or by accessing the SlimServ-
er via my Web browser and having it
send commands to the Squeezebox.

I’ve mentioned the SlimServer here
not only because I’m a happy Squeeze-
box customer, but also because:

• SlimServer inexpensively integrates
your home computer with your
home audio system. A few years

ago, it’s likely that few would have
even considered using Perl to solve
this integration problem, and today,
more than a few are probably sur-
prised that a Perl application is fast
enough to stream music data over
an 802.11b network such that the
listener experiences no audible
dropouts. I’ve listened to it for hours
at a time without any problems.

• SlimServer can be accessed over
multiple protocols. For example, as I
mentioned earlier, you can control
it with a remote control or via a
Web browser. The browser window
lets you see and control every aspect
of the system, including the audio
hardware and the SlimServer itself.
SlimServer is also accessible pro-
grammatically via a command-line
interface and a TCP port. For exam-
ple, sending the string “title ?”

IEEE INTERNET COMPUTING www.computer.org/internet/ JULY • AUGUST 2004 83

Dark Matter Revisited

PEAK’s developers believe their system
will be easier, faster,and more scalable
than J2EE,which they say is overly large
and complex.

CERTIFIED SOFTWARE DEVELOPMENT PROFESSIONAL PROGRAM

2004 Test Windows: 1 April—30 June and 1 September—30 October
Applications now available!

G E T C E RT I F I E D

Visit the CSDP web site at http://computer.org/certification

or contact certification@computer.org

Doing Software Right

� Demonstrate your level of ability in relation to your peers

� Measure your professional knowledge and competence

Certification through the CSDP Program differentiates between you and other software
developers. Although the field offers many kinds of credentials, the CSDP is the only one
developed in close collaboration with software engineering professionals.

“The exam is valuable to me for two reasons:

One, it validates my knowledge in various areas of expertise within the software field, without regard to specific
knowledge of tools or commercial products...

Two, my participation, along with others, in the exam and in continuing education sends a message that software
development is a professional pursuit requiring advanced education and/or experience, and all the other
requirements the IEEE Computer Society has established. I also believe in living by the Software Engineering
code of ethics endorsed by the Computer Society. All of this will help to improve the overall quality of the
products and services we provide to our customers...”

— Karen Thurston, Base Two Solutions

Toward Integration

84 JULY • AUGUST 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

followed by a carriage return to
SlimServer, either via its standard
input or its TCP port, causes it to
return the title of the song that’s
currently playing. It supports sever-
al similar commands for controlling
and querying it.

• SlimServer is open-source software
that is freely available. As with
most successful open-source soft-
ware, there’s a community of
developers that work on SlimServ-
er. As a result, SlimServer is
remarkably bug-free.

I have only one problem with Slim-
Server. In looking through the source,
it appears that SlimServer is built from
scratch, in the sense that it seems to
use only its own Perl modules to get
its work done. I wonder how much
cleaner SlimServer might be if it were
instead written in Python and used a
network programming framework,

such as Twisted. If I had more spare
time, I might consider developing such
a system myself. Oh well, given the
SlimServer’s price and the fact that it
already works so well, I guess I
shouldn’t complain.

Conclusion
In the past, the only networking sup-
port that dynamic languages provided
was low-level access to raw sockets,
but these examples show that today’s
dynamic languages are powering
frameworks and applications that pro-
vide useful high-level distributed com-
puting abstractions without sacrificing
efficiency. For a variety of compelling
reasons, including their rich features,
flexibility, compact source code, ease
of development and maintenance, and
proven capabilities, these “dark-matter”
languages are leading the next wave of
mainstream distributed computing and
integration applications.

References
1. B. Leuf and W. Cunningham, The Wiki Way:

Collaboration and Sharing on the Internet,

Addison-Wesley, Apr. 2001.

2. S. Vinoski, “Middleware ‘Dark Matter’,”

IEEE Internet Computing, vol. 6, no. 5,

Sept./Oct. 2002, pp. 92–95.

3. J. Lemon, Kqueue: A Generic and Scalable

Event Notification Facility, tech. report,

FreeBSD Project, 2000; http://people.free

bsd.org/~jlemon/papers/kqueue_freenix.pdf.

4. S. Vinoski, “Integration with Web Services,”

IEEE Internet Computing, vol. 7, no. 6,

Nov./Dec. 2003, pp. 75–77.

Steve Vinoski is chief engineer of product inno-

vation for IONA Technologies. He’s been

involved in middleware for 16 years. Vinos-

ki is the coauthor of Advanced Corba Pro-

gramming with C++ (Addison Wesley Long-

man, 1999), and he has helped develop

middleware standards for the OMG and

W3C. Contact him at vinoski@ieee.org.

