
Toward Integration

Chain of
Responsibility

A mong the design patterns that recur most
often in middleware, such as Wrapper-
Façade1 and Strategy,2 my favorite is the

Chain of Responsibility pattern.2 In object-orient-
ed terms, the CoR pattern aims to decouple a caller
from its target object, and it accomplishes this by
interposing a chain of objects between them. This
arrangement lets each object in the chain act on a
request as it flows from the caller to the target. The
pattern evokes images of time-honored approach-
es such as assembly lines and division of labor.

Researchers have successfully applied the CoR
pattern to both operating systems and middleware,
enabling flexible and efficient communication
bindings between an application and its target. For
example, Dennis Ritchie designed his Unix I/O
streams approach3 to eliminate unnecessary cou-
pling between orthogonal functions sitting
between the user application and the I/O device,
and to let developers add new device drivers, espe-
cially network drivers, without duplicating proto-
col code or using a different application model for
each new device. Ritchie’s design uses separate
modules that are linked together to form queues
for reading and writing.

In the distributed systems arena, Marc Shapiro
based his flexible bindings4 on creating stub-scion
pair (SSP)5 chains to bind a sender to its target. To
support bindings that allow uniform transparent
access for local, remote, fragmented, or mobile
objects, each link in the SSP chain provides a level
of indirection allowing for the encapsulation of
certain capabilities, such as marshaling, location,
or forwarding. Such a chain can be of arbitrary
length, but neither its length nor its composition
show through to the application.

A common application of the CoR pattern in dis-
tributed systems is the chaining of stubs and skele-
tons between clients and servers in remote proce-
dure call (RPC) systems. In this column, I detail
other applications of the CoR pattern that I’ve seen
or used in my own middleware development.

Filters
The first application of the CoR pattern in a mid-
dleware product that I recall was in support of the
filter feature of IONA Technologies’ original Orbix
product (I am currently employed by IONA, but
wasn’t at the time), one of the first successful
Corba ORB implementations on the market. Orbix
filters let an application insert its own code to
intercept a request or reply at certain points along
its trip from the caller to the target object and
back. For example, a caller could insert a premar-
shal filter to add extra data, such as a caller iden-
tifier, into a request before marshaling the identi-
fier for transmission to the target. Alternatively, a
caller could insert a postmarshal filter into the
request path to intercept and encrypt each request
before sending it over the network connection to
the target. Server objects not only had the same
pre- and postmarshal filtering capabilities, but
could also employ thread filters to intercept
requests and dispatch them to different threads
depending on the best threading model for the
server application.6

Filters contributed to Orbix’s original success in
the marketplace because they provided simple yet
useful application flexibility. Filters let applica-
tions both effectively extend the ORB’s capabili-
ties independent of the vendor and separate infra-
structure functionality, such as encryption and
multithreaded dispatching, from the business logic
functionality implemented in the Corba objects.
Keeping such functionality separate facilitates its
reuse in other applications.

Pluggable
Transports and Protocols
Middleware typically gives applications abstrac-
tions for request invocation or message passing.
Having these abstractions in place not only makes
it easier to isolate applications from the underly-
ing communication protocol details, but it also lets
you plug in different protocols and transports

80 NOVEMBER • DECEMBER 2002 http://computer.org/internet/ 1089-7801/02/$17.00 ©2002 IEEE IEEE INTERNET COMPUTING

Steve Vinoski • IONA Technologies • vinoski@ieee.org

below the application without chang-
ing the application itself.

Both Ritchie and Shapiro aimed to
provide binding transparency to the
application. Ritchie sought to save the
application from having to adapt the
details of its interactions with the
underlying I/O system to its targeted
device. Similarly, Shapiro’s bindings
isolated the application from the
details of the target object’s location
and implementation. Both efforts let
applications use alternative communi-
cations mechanisms or devices to
transparently reach and interact with
the target service.

Many middleware systems support
pluggable transports and protocols.
This support comes in several forms.

� Compile-time extensibility. Some
extensible networking class frame-
works allow different protocol han-
dlers or transports to be compiled
into an application. Memory-
restricted systems that don’t need
link-time or runtime flexibility typ-
ically use this approach, which
normally allows only a single
transport or protocol per compiled
application.

� Link-time extensibility. Some mid-
dleware frameworks allow applica-
tions to link against multiple trans-
port or protocol libraries, making
them available at runtime.

� Runtime extensibility. Some mid-
dleware systems use dynamic load-
ing to load transport or protocol
libraries on demand. This approach
is similar to link-time extensibility,
except the systems do not load
transports and protocols unless and
until the application attempts to
contact a target that requires them.

Systems that are extensible at link-
time and runtime vary in how they
support concurrent multiple trans-
ports. In some systems, multithreading
isolates each transport into its own lis-
tening thread. In others, all transports
fit into a single shared listening loop,
perhaps by adding the file descriptors
for their listening ports to a common

file descriptor set passed into the
select system call.

Interceptors
The filters and pluggable transports
and protocols described above are
instances of interceptors. An intercep-
tor is generally one link in a chain of
responsibility, processing messages,
requests, and replies as they move up
and down the chain. Interceptors can
examine, modify, and augment each
message, and thus influence the mes-
sage data or destination.

In Corba, both security and distrib-
uted transactions rely on interceptors
for parts of their functionality. For
example, a client-side transaction
interceptor adds a transaction identi-
fier to the service context portion of
a general inter-ORB protocol (GIOP)
request. A matching server-side inter-
ceptor uses this identifier to deter-
mine the distributed transaction the
request belongs to. Similarly, securi-
ty interceptors can encrypt a message
before it’s written to the client’s net-
work and decrypt it when it arrives at
the server.

If a Corba client using an intercep-
tor-based ORB and operating in a
transaction context invokes a request
requiring encryption, the following
processing steps occur:

1. The client invokes the desired
request by calling a function on its
local proxy object.

2. The proxy turns the function call
into a request to be passed down
the binding chain.

3. The GIOP interceptor creates a
header for the request message.

4. The chain’s transaction interceptor
marshals the transaction ID into a
service context in the request
message.

5. The GIOP interceptor finishes
marshaling the request header and
request body into the request
message.

6. The encryption interceptor encrypts
the marshaled message buffer.

7. The Internet inter-ORB protocol
(IIOP) interceptor sends the

encrypted message buffer over a
TCP connection to the server.

8. The server’s IIOP interceptor,
listening on the network, receives
the encrypted request message.

9. The encryption interceptor decrypts
the message.

10. The GIOP interceptor demarshals
the message header.

11. The transaction interceptor
demarshals the transaction ID
service context in the request
header, creating a transaction
context in which the invoked
function can run.

12.The GIOP interceptor demarshals
the remaining request header and
request body.

13.The object’s skeleton calls the
target function on the object’s
servant, passing all the demar-
shaled arguments.

14.The reply travels back along the
same chain of interceptors, but
without a transaction ID.

15.The client’s proxy function returns
any output arguments and return
value to the client application.

Figure 1 (next page) illustrates these
steps.

Note the subtle difference between
security and transaction interceptors.
The encryption interceptor operates on
marshaled message buffers, whereas
the transaction ID interceptor operates
on messages that have either not yet
been marshaled (on the client side) or
have already been demarshaled (on the
server side). This distinction shows that
not all interceptors provide the same
interface or adhere to exactly the same
request-handling semantics. In Corba
terminology, request-level interceptors
operate on ORB-internal request
objects, and message-level interceptors
operate directly on marshaled message
buffers. You could implement an inter-
ceptor that logs requests and replies
passing in and out of a server, for
example, as a request-level intercep-
tor, but you would implement an
interceptor that compresses messages
to be sent and decompresses all
received messages as a message-level

IEEE INTERNET COMPUTING http://computer.org/internet/ NOVEMBER • DECEMBER 2002 81

Chain of Responsibility

interceptor.
Both Corba and J2EE provide appli-

cation-visible support for interceptors.
Using portable interceptors, a recent
addition to the Corba specification,
applications can write portable
request-level interceptors. (The
portable interceptor specification does
not address message-level interceptors,
however, due to performance and
complexity concerns.) Version 2.3 of
the J2EE servlet specification adds fil-
ters that let applications intercept and
process servlet requests and replies
independent of the logic implemented
in the servlet itself. Unfortunately,
though, interceptors have not made
their way into other relevant Java
standards, such as the failed Java spec-
ification request (JSR) to introduce
Orbix-like filters into Java remote
method invocation (RMI).

Containers
and Object Adapters
The various types of interceptors I’ve
described add flexibility to the middle-
ware infrastructure, but only to a
degree. What they do not address is
flexible application programming
models. Regardless, this is a shortcom-
ing of most middleware designs and
implementations, rather than a prob-

lem inherent in the CoR pattern.
Containers and object adapters also

participate in binding chains, and thus
are targets for the CoR pattern. Gener-
ally, containers and object adapters
host entities that implement business
logic, supplying common services in
areas such as activation, security, and
transactions to those entities. When a
request arrives, a container or object
adapter must locate the target entity
and pass it the request for processing.
Containers (the J2EE Enterprise Jav-
aBeans [EJB] container and servlet
container, for example) and object
adapters (such as the Corba Portable
Object Adapter [POA]), fit naturally
into chains of interceptors, converting
internal request objects into program-
ming language function calls on an
artifact (usually an object) used to
implement the target entity.

The focus of my work over the past
six years has been IONA’s Adaptive
Runtime Technology, a flexible and
efficient framework that supports our
various middleware products. ART
uses the CoR pattern heavily, applying
it not only to transports, protocols, and
general interceptors, but also to con-
tainers and object adapters. You can
configure ART to support different
transports, protocols, and interceptors,

as well as different containers, includ-
ing a Corba POA, J2EE EJB and servlet
containers, and a Web services con-
tainer, even concurrently. Given that
we originally designed ART to support
only Corba, it’s surprising and gratify-
ing to know that through the CoR pat-
tern it can also support other pro-
gramming model alternatives.

Performance
Applying interceptors and the CoR
pattern lets you separate orthogonal
functions into reusable units and avoid
creating fragile and inflexible mono-
lithic subsystems. Rather than building
a logging function directly into an
IIOP implementation, for example, you
could easily build a Corba portable
interceptor to handle logging and
apply it equally well in a binding that
uses an alternative, shared-memory
based transport.

Unfortunately, as most of us know,
we usually gain flexibility at the cost
of reduced performance. My own
experience with ART and its heavy
reliance on interceptors and the CoR
pattern shows, however, that such
designs need not be any slower than
their monolithic counterparts. A well-
designed interceptor chain adds only
the overhead of the few function calls
needed to pass requests, replies, and
messages up and down the chain. As
with all distributed middleware, the
real key to performance is to avoid
expensive activities such as buffer
copying, heap memory allocation,
operating system kernel calls, and
thread context switching in the request
path. Nothing inherent in interceptors
or the CoR pattern requires these
expensive items.

One last benefit of the CoR pattern
is that its avoidance of monolithic sub-
systems makes for easier software
maintenance. For example, in a system
supporting runtime loading and
unloading of pluggable interceptors,
you could fix a bug in an interceptor
in a binary-compatible fashion such
that a running application could
unload the old buggy version and load
the new fixed version. Generally, bugs

82 NOVEMBER • DECEMBER 2002 http://computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

Network

Client

Server

Proxy

Encryption

General inter-orb
protocol

Internet inter-orb
protocol

Internet inter-orb
protocol

General inter-orb
protocol

Transaction

Skeleton

Encryption

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

Transaction

Figure 1. Request flow through an interceptor chain.

are easier to locate and fix when you avoid mono-
lithic software, and even the inevitable “feature
creep” becomes easier to deal with because indi-
vidual features can be isolated to the appropriate
interceptor. Aspect-oriented programming (AOP)7

takes a novel approach to these types of develop-
ment and maintenance problems by using inter-
ceptors to solve common problems that cut across
multiple software functions, such as logging and
error handling, without requiring code duplication.

An interesting result of applying the CoR pat-
tern is that when your code invokes a request or
operation, the presence of the interceptor chain
means that you’re not precisely sure of everything
your code is invoking, or what it’s communicating
to what it invokes. If you’re new to CoR, this may
seem troubling at first, but it need not be an issue
as long as the contract, semantics, and quality you
expect from the service you’re invoking are ful-
filled. Such service abstractions are obviously at
the heart of service-oriented architectures (SOAs),
which are critically important for middleware-
based systems.

References
1. D. C. Schmidt et al., Pattern-Oriented Software Architec-

ture: Patterns for Concurrency and Distributed Objects, vol.
2, John Wiley & Sons, New York, 2000.

2. E. Gamma et al., Design Patterns: Elements of Reusable
Object-Oriented Software., Addison-Wesley, Reading, Mass.,
1995.

3. D.M. Ritchie, ‘‘A Stream Input-Output System,’’ AT&T Bell
Laboratories Technical J., vol. 63, no. 8, Oct. 1984; avail-
able at http://cm.bell-labs.com/cm/cs/who/dmr/st.html.

4. M. Shapiro, “Flexible Bindings for Fine-Grain, Distributed
Objects,” Rapport de Recherche INRIA 2007, August 1993,
available at www-sor.inria.fr/publi/FLEX_rr2007.html.

5. M. Shapiro, P. Dickman, and D. Plainfosse. “SSP Chains:
Robust, Distributed References Supporting Acyclic Garbage
Collection,” tech. report 1799, INRIA, Rocquencourt,
France, Nov. 1992.

6. D.C. Schmidt and S. Vinoski. “Comparing Alternative Pro-
gramming Techniques for Multi-threaded Servers,” SIGS
C++ Report, vol. 8, no. 2, Feb. 1996, available at www.
iona.com/hyplan/vinoski/col5.pdf.

7. G. Kiczales et al., “Aspect-Oriented Programming,” Proc.
11th European Conf. Object-Oriented Programming (ECOOP
97), Lecture Notes in Computer Science 1241, Springer-Ver-
lag, Berlin, 1997, pp. 220–242; also available at
www.parc.xerox.com/csl/groups/sda/publications/papers/
Kiczales-ECOOP97/for-web.pdf.

Steve Vinoski is vice president of platform technologies and

chief architect for IONA Technologies. He is coauthor of

Advanced CORBA Programming with C++ (Addison Wes-

ley Longman, 1999). Vinoski serves as IONA’s alternate

representative to the W3C’s Web Services Architecture

working group.

A
D

V
E

R
T

I
S

E
R

/

P

R
O

D
U

C
T

I

N
D

E
X

N O V E M B E R / O C T O B E R 2 0 0 2

John Wiley & Sons Back Cover

Sand storm Enterprises 17

Advertising Personnel

Advertiser / Product Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone:+1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org

Marian Anderson
Advertising Coordinator
Phone:+1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone:+1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Debbie Sims
Assistant Advertising Coordinator
Phone:+1 714 821 8380
Fax: +1 714 821 4010
Email: dsims@computer.org

Advertising Sales Representatives

Mid Atlantic (product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org
Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org
Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Northwest (product)
John Gibbs
Phone: +1 415 929 7619
Fax: +1 415 577 5198
Email: jg.ieeemedia@ieee.org

Midwest (product)
David Kovacs
Phone: +1 847 705 6867
Fax: +1 847 705 6878
Email: dk.ieeemedia@ieee.org Midwest/Southwest recruitment)

Tom Wilcoxen
Phone: +1 847 498 4520
Fax: +1 847 498 5911
Email: tw.ieeemedia@ieee.org

New England (recruitment)
Barbara Lynch
Phone: +1 401 738 6237
Fax: +1 401 739 7970
Email: bl.ieeemedia@ieee.org

Northwest (recruitment)
Mary Tonon
Phone: +1 415 431 5333
Fax: +1 415 431 5335
Email: mt.ieeemedia@ieee.org

Southern CA (recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Japan
German Tajiri
Phone: +81 42 501 9551
Fax: +81 42 501 9552
Email: gt.ieeemedia@ieee.org

Europe (product)
Hilary Turnbull
Phone: +44 131 660 6605
Fax: +44 131 660 6989
Email: impress@impressmedia.com

Southeast (product/recruitment)
C. William Bentz III
Email: bb.ieeemedia@ieee.org
Gregory Maddock
Email: gm.ieeemedia@ieee.org
Sarah K. Wiley
Email: sh.ieeemedia@ieee.org
Phone: +1 404 256 3800
Fax: +1 404 255 7942

Southwest (product)
Royce House
Phone: +1 713 668 1007
Fax: +1 713 668 1176
Email: rh.ieeemedia@ieee.org

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

