
Toward Integration

A Time for Reflection

It’s hard to believe that it’s already 2005. Tradi-
tionally, a new year’s arrival brings reflections
on the previous year. Such reflection can often

result in positive changes and improvements in
our lives. Software reflection, a technique or
approach that makes software self-aware, is simi-
lar to human reflection, although not as subjective
or complicated. Proper use of software reflection
can produce flexible, adaptable applications. In a
sense, reflective applications, like reflective peo-
ple, are capable of dynamic self-improvement.

Because integration requires flexibility and
adaptation, reflection is growing in popularity for
software, such as Web services, that glues appli-
cations together. Understanding reflection basics
and how to apply them to your own applications
can ease integration nightmares. Much has been
written about reflective techniques, so I won’t try
to cover the topic in its entirety here. Instead, I’ll
focus on a problem that reflection can help solve:
dynamic invocation as an approach for working
across disparate type systems. (For more infor-
mation about reflection in general, visit the
reflective middleware section of IEEE Distributed
Systems Online; http://dsonline.computer.org/
middleware/RM.htm.)

This problem pops up frequently when inte-
grating disparate systems: each system has its own
idea of a type system, and invocations in each are
based on assumptions about that type system’s
ubiquitousness. Such assumptions make it inher-
ently difficult to perform invocations and send
messages between systems.

Signature-Based Polymorphism
Many of us are familiar with polymorphism’s
utility. It lets us separate interface from imple-
mentation in our applications, which reduces
coupling between modules and lets us extend
applications without making changes across the

whole code base. Most polymorphism uses are
based on interface inheritance. Invoking a base
interface method on a target object whose inter-
face is derived from the base works because, by
definition, the derived interface supports the
base interface.

Yet, interface-based polymorphism is not a
panacea. With popular languages such as Java
and C++, polymorphism suffers from a scalability
problem. Specifically, it doesn’t work across mul-
tiple interface or type hierarchies developed sepa-
rately in such languages. Borrowing from an old
and somewhat contrived example, assume we
have a lottery interface hierarchy and a gun inter-
face hierarchy, and each supports a method
named draw. With interface-based polymorphism,
we can write code to invoke either the gun ver-
sion or the lottery version, but the same code can’t
invoke the two different types. For real applica-
tions, you encounter this limitation whenever you
try to use similar but separately developed inter-
face hierarchies in a single application. You end
up requiring similar but separate — and essential-
ly duplicated — code to handle invocations for
each interface hierarchy.

Signature-based polymorphism provides one
answer to these limitations. Emerald, a highly inno-
vative and influential distributed system from the
1980s, relied extensively on signature conformance
for polymorphism.1 The idea behind signature con-
formance (which also appears in nondistributed
systems2) is to allow polymorphic behavior based
solely on method signatures rather than on groups
of methods defined and overridden in inheritance-
related interfaces. For example, if our lottery and
gun hierarchies’ draw methods had the same sig-
nature, the same code could correctly invoke both
using signature-based polymorphism.

Signature-based polymorphism hasn’t become
a common feature in popular programming lan-

86 JANUARY • FEBRUARY 2005 Published by the IEEE Computer Society 1089-7801/05/$20.00 © 2005 IEEE IEEE INTERNET COMPUTING

Steve Vinoski • IONA Technologies

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2005 87

A Time for Reflection

guages, but generic programming is
based on its essence.3 For example, the
C++ Standard Template Library (STL)
makes assumptions about the proper-
ties — but not the interface types — of
parameters passed to C++ template
classes and functions. For example, a
forward iterator for a container class is
expected to provide only two capabil-
ities: element-by-element forward
advancing and dereferencing for read-
ing and writing individual elements.
There is no abstract base forward-iter-
ator class that defines pure virtual
functions that all concrete forward
iterators must inherit and override.

This conformance-based approach
allows a normal C++ pointer as well as
a specialized C++ class with over-
loaded increment and dereference
operators — two very distinct types —
each to fulfill the forward-iterator
needs for the same template class or
function. Code based on generic pro-
gramming techniques simply assumes
that each template parameter conforms
to the desired behavior and properties,
without requiring subtype relation-
ships to achieve polymorphism.

Although signature-based poly-
morphism and generic programming
are incredibly useful approaches for
integrating disparate code, they gener-
ally rely on compile-time checking and
method binding that is too static for
many applications. They aren’t suitable
for applications that must use applica-
tion metadata to construct dynamic
invocations at runtime. Despite its flex-
ibility, generic programming doesn’t
work for joining disparate systems that
can’t be compiled together into the
same application. However, I mention
generic programming here because it
illustrates a key benefit of reflection:
applications can work around the
somewhat artificial obstacles that strict
interface inheritance and subtyping
rules often impose.

Reflection in Corba
Fundamentally, Corba exists to sup-
port application integration — for both

static and dynamic applications. In the
static approach, developers write
object interface definitions in the
Corba Interface Definition Language
(IDL), a C++-like declarative language,
and then use those IDL definitions to
generate code in their chosen pro-
gramming language. They implement
their objects based on the generated
code, which is emitted by an IDL com-
piler. The compiler uses rules specified
by the Object Management Group
(OMG), stewards of the Corba stan-

dard, for mapping IDL constructs to
different programming languages. The
most popular language mappings are
for C++ and Java, although standard
mappings also exist for PL/I,
Smalltalk, and Python.

We call this code-generation
approach static because the generated
code and the application code written
against it strongly tie to the original
IDL definitions, and the application
code can’t be used against other IDL
definitions, even if they’re structural-
ly equivalent. The code is essentially
tied to the interface-based polymor-
phism that IDL brings to the picture.
Despite this lack of flexibility, most
Corba applications are based on the
static approach, mainly due to ease of
programming and to overarching per-
formance concerns.

Corba’s support for multiple pro-
gramming languages makes it quite
flexible; it can combine applications
written on different platforms and in
different languages. Thus, it can solve
the problem of integrating disparate
systems with separate type system
notions. In Corba, such a solution typ-

ically involves creating a set of IDL
definitions that abstract the services
offered by the systems being integrat-
ed, and then combining code generat-
ed from those IDL definitions with the
application code for each system.

Unfortunately, that’s not the end
of the story. What happens when a
single Java or C++ application must
invoke operations in two or more sets
of IDL definitions? One approach is
simply to build the application with
static knowledge of both IDL defini-

tions, but that doesn’t scale for large
IDL definitions or for large numbers
of IDL definition sets. Even with two
sets, the application requires distinct
code for invoking each set to address
type incompatibilities. Interface-based
polymorphism strikes again.

Fortunately, Corba also supports
dynamic applications. With this
approach, applications depend on the
Dynamic Invocation Interface (DII)
provided by the Object Request Broker
(ORB) and the root interface of Corba’s
object interface inheritance hierarchy,
which is named CORBA::Object.
Every Corba object supports this inter-
face because every IDL interface
implicitly derives from it. One opera-
tion that CORBA::Object provides
lets an application construct a dynam-
ic request object for any operation that
the target object supports. For exam-
ple, if you write an application that
depends on an operation named
print, you can dynamically ask any
object supporting an operation by that
name to construct a request letting you
invoke it.

The key part of such dynamic re-

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2005 87

Despite its flexibility, generic programming
doesn’t work for joining disparate systems
that can’t be compiled together into the
same application.

quest construction is that the applica-
tion doesn’t need any compile-time
knowledge of the object’s specific IDL
interface. The only compile-time
knowledge it requires is that of the
CORBA::Object base interface. Unlike
its static counterpart, dynamic Corba
invocation has no dependencies on IDL
interface-inheritance hierarchies, so
applications avoid the problems associ-
ated with interface-based polymor-
phism. Thus, dynamic Corba applica-
tions are far more flexible and
adaptable than their static counterparts.

At runtime, a dynamic Corba
application can dynamically discover
information necessary for request
construction, such as operations’
names, arguments, and return types.
Unfortunately, Corba has a problem
with runtime metadata discovery. The
standard specifies that IDL metadata is
managed by an interface repository
(IFR) service. If a Corba application
wants to invoke an operation on a
previously unknown object, it must
first consult the IFR to determine that
object’s interface metadata, and then
use the metadata to dynamically con-
struct the desired requests.

Although this sounds simple, it
doesn’t work well in practice. One big
problem is that almost nobody deploys
an IFR as part of a production Corba
application, because it’s yet another
server that requires computing re-
sources and must be monitored and
maintained. Static Corba applications
avoid these costs because they don’t
need IFRs. Another problem with the
IFR approach is that it’s too easy for
the metadata to become outdated with
respect to the actual Corba object def-
initions if someone changes an object’s
interface but forgets to update the
related IFR definitions.

A better approach to discovering
object metadata is direct object intro-
spection, which is nothing new. Reflec-
tive programming languages such as
CLOS, Smalltalk, Java, and Python
have supported it for years. Indeed,
reflection and introspection go hand in

hand; you use introspection to obtain
metadata about an object or applica-
tion, and then you use that metadata
as part of creating and carrying out
reflective operations. Unfortunately,
Corba didn’t support object introspec-
tion until recently.

In November 2003, I began an
effort in the OMG to add object intro-
spection to Corba. A year later, a stan-
dard approach to Corba introspection
is entering a finalization phase for
official adoption into the Corba speci-
fication sometime in 2005.4 This will
enable truly reflective Corba applica-
tions that can simply ask a Corba
object for its metadata — rather than
requiring IFR access — and use it to
dynamically construct requests inde-
pendent of IDL interface-inheritance
hierarchies. Object introspection will
also ease the integration of Corba sys-
tems with other technologies, notably
Web services.

Drawbacks
Using reflective techniques to integrate
disparate systems has some problems.
For one thing, the code required for
introspection and dynamic request
construction can be jarringly different
from — and much more complicated
than — regular code. To call a function
with normal programming-language
syntax, the developer simply writes the
function name and passes arguments
to it, also by name. With reflection,
you must find the metadata for the
function or operation to be invoked,
and use it to dynamically construct
appropriate values to pass as argu-
ments. This can be arduous even for
relatively simple types. Worse, you
often have to perform the dynamic
invocation using syntax or calls that
look nothing like normal invocations.
The relative complexity of reflective
programming, which often results in
applications consisting of one or two
orders of magnitude more lines of code
than similar static application code,
tends to mean that only sophisticated
programmers practice it.

Another problem, which relates
directly to the dynamic invocation
problem we’re discussing, is that sep-
arately developed systems don’t nor-
mally offer operation signatures that
match coincidentally. This is a likely
reason that signature-based polymor-
phism has never caught on. Thus,
reflection code that’s very specific to a
particular operation is unlikely to be
widely reusable. You can avoid this
problem by taking the generic pro-
gramming approach and specifying
what particular operations and features
generic or reflective code expects from
its parameters and targets, without
requiring them to inherit from a par-
ticular class hierarchy. This is essen-
tially how the JavaBeans component
architecture works (http://java.sun.
com/products/javabeans).

What I’ve described here isn’t really
new, but it reflects many of the

common problems and arguments we
see in today’s Web services world. We
invented SOAP in an attempt to get
around the problems of requiring ubiq-
uitous object models and types in dis-
tributed systems. Universal type sys-
tems simply don’t scale. Systems based
on static code generation remain pop-
ular because they’re an easy choice.
Static approaches map artifacts from
the system level — such as service
interfaces and operations — into pro-
gramming language entities that we
can use and manipulate using normal
programming approaches. Thus, static
systems appear to be easier to build
and safer to use as a basis for distrib-
uted integration applications.

Unfortunately, few real-world sys-
tems are static. Almost inevitably,
changes in business requirements wipe
out any development advantages
gained from hard-coding static inter-
faces and types at the programming-
language level. Thus, the Web services
community is increasingly moving
away from remote procedure call (RPC)
and interface-oriented approaches,

88 JANUARY • FEBRUARY 2005 www.computer.org/internet/ IEEE INTERNET COMPUTING

Toward Integration

because they perpetuate the problems
with types, interfaces, and operation
invocations I outlined here.

Instead, Web service developers
have been moving toward a model of
passing XML documents around to
simple — although not quite uniform
— service interfaces. This simplified
approach scales reasonably well be-
cause it mirrors the way humans inter-
act in day-to-day business activities.
This approach can be more difficult
than writing static programs, but mak-
ing developers’ lives easier is not the
goal. Even though it’s harder to write
reflection code, programmers are
increasingly using reflective tech-
niques to develop distributed services
because the resulting systems are far
more flexible and adaptive than their
static counterparts, resulting in cost-
effective applications that clearly and
measurably solve business problems.

Will Web services development
stay on this path, or will unforeseen
innovations in 2005 result in a new
direction altogether? Perhaps we’ll
reflect on that next year.

References

1. A. Black et al., “Distribution and Abstract

Types in Emerald,” IEEE Trans. Software

Eng., vol. 13, no. 1, 1987, pp. 65–76.

2. E.D. Granston and V.F. Russo, “Signature-

Based Polymorphism for C++,” Proc. Usenix

C++ Conf., Usenix Assoc., 1991, pp. 65–79.

3. K. Czarnecki and U. Eisenecker, Generative

Programming: Methods, Tools, and Appli-

cations, Addison-Wesley, 2000.

4. Object Management Group, Corba Reflection:

OMG Request for Comments, OMG document

mars/2004-08-12, 2004; www.omg.org/cgi

-bin/apps/doc?mars/04-08-12.pdf.

Steve Vinoski is chief engineer of product inno-

vation for IONA Technologies. He’s been

involved in middleware for 17 years. He is

the coauthor of Advanced Corba Program-

ming with C++ (Addison Wesley Longman,

1999), and he has helped develop middleware

standards for the Object Management Group

(OMG) and World Wide Web Consortium

(W3C). Contact him at vinoski@ieee.org.

IEEE INTERNET COMPUTING

Mid Atlantic
(product/recruitment)
Dawn Becker
Phone: +1 732 772 0160
Fax: +1 732 772 0161
Email: db.ieeemedia@ieee.org

New England (product)
Jody Estabrook
Phone: +1 978 244 0192
Fax: +1 978 244 0103
Email: je.ieeemedia@ieee.org

New England (recruitment)
Robert Zwick
Phone: +1 212 419 7765
Fax: +1 212 419 7570
Email: r.zwick@ieee.org

Southeast (product)
Bob Doran
Phone: +1 770 587 9421
Fax: +1 770 587 9501
Email: bd.ieeemedia@ieee.org

Southern CA (product)
Marshall Rubin
Phone: +1 818 888 2407
Fax: +1 818 888 4907
Email: mr.ieeemedia@ieee.org

Southeast (recruitment)
Thomas M. Flynn
Phone: +1 770 645 2944
Fax: +1 770 993 4423
Email: flynntom@mindspring.com

Midwest/Southwest
(recruitment)
Darcy Giovingo
Phone: +1 847 498-4520
Fax: +1 847 498-5911
Email: dg.ieeemedia@ieee.org

Midwest (product)
Dave Jones
Phone: +1 708 442 5633
Fax: +1 708 442 7620
Email: dj.ieeemedia@ieee.org

Will Hamilton
Phone: +1 269 381 2156
Fax: +1 269 381 2556
Email: wh.ieeemedia@ieee.org

Joe DiNardo
Phone: +1 440 248 2456
Fax: +1 440 248 2594
Email: jd.ieeemedia@ieee.org

Southwest (product)
Josh Mayer
Phone: +1 972 423 5507
Fax: +1 972 423 6858
Email: josh.mayer@wageneckassoci-
ates.com

Northwest (product)
Peter D. Scott
Phone: +1 415 421 7950
Fax: +1 415 398 4156
Email: peterd@pscottassoc.com

Northwest/Southern CA
(recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Connecticut (product)
Stan Greenfield
Phone: +1 203 938 2418
Fax: +1 203 938 3211
Email: greenco@optonline.net

Japan (product/recruitment)
Tim Matteson
Phone: +1 310 836 4064
Fax: +1 310 836 4067
Email: tm.ieeemedia@ieee.org

Europe (product/recruitment)
Hilary Turnbull
Phone: +44 1875 825700
Fax: +44 1875 825701
Email:
impress@impressmedia.com

A D V E R T I S E R / P R O D U C T I N D E X

J A N U A R Y / F E B R U A R Y 2 0 0 5

Classified Advertising 15

CTIA Wireless 2005 Cover 4

John Wiley & Sons, Inc. Cover 2

Advertising Personnel

Advertiser / Product Page Number

Marion Delaney
IEEE Media, Advertising Director
Phone: +1 212 419 7766
Fax: +1 212 419 7589
Email: md.ieeemedia@ieee.org

Marian Anderson
Advertising Coordinator
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: manderson@computer.org

Sandy Brown
IEEE Computer Society,
Business Development Manager
Phone: +1 714 821 8380
Fax: +1 714 821 4010
Email: sb.ieeemedia@ieee.org

Advertising Sales Representatives

IEEE Internet Computing
IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, California 90720-1314
USA
Phone: +1 714 821 8380
Fax: +1 714 821 4010
http://www.computer.org
advertising@computer.org

