
The Functional Web

104 Published by the IEEE Computer Society 1089-7801/09/$25.00 © 2009 IEEE IEEE INTERNET COMPUTING

F or me, this magazine issue completes a tran-
sition I began two years ago. The previous
issue marked the end of the seventh year

of the “Toward Integration” column, in which
I wrote about issues related to middleware and
enterprise integration. One of the points I fre-
quently tried to drive home in that column is
that change is inevitable and that it’s generally
better to embrace it rather than futilely try to
prevent it. The transition I’m referring to started
when I chose to leave the middleware industry
after 16 years. At that point, I initiated the task
of refocusing “Toward Integration” toward the
Web, which I see as a far more capable, flexible,
and cost-effective approach than traditional en-
terprise middleware for many integration and
distribution projects.

With this issue, we bid a final farewell to
“Toward Integration” — and with it, the final
vestiges of my focus on the world of enterprise
middleware — and say hello to “The Function-
al Web.” In this column, I intend to continue
writing about Representational State Transfer
(REST) and the Web, specifically concentrating
on developing production-ready RESTful Web
services using functional programming (FP)
languages and techniques.

Why Functional Programming?
Despite the fact that FP languages have been
around for just about forever in terms of the
history of electronic computing — John Mc-
Carthy invented Lisp in the late 1950s, for ex-
ample — they’ve never shared the popularity or
usage levels of their imperative counterparts.
For years, the majority of industry-oriented de-
velopers considered functional languages to be
inefficient and suitable only for academic ex-
ercises, and the fact that functional language
syntax and idioms differed so widely from what

practicing programmers were accustomed to did
nothing to help these languages gain popularity.
The object-orientation (OO) movement, which
started gaining a tangible industry foothold in
the 1980s and then, thanks to C++ and Java,
boomed tremendously in the 1990s, has resulted
in a whole generation of programmers who’ve
grown up with OO programming (OOP) as the
primary approach they know and understand.
Indeed, OOP is fundamentally the only approach
many programmers today really know.

Fortunately, however, FP languages appear to
be gaining in popularity for a variety of reasons,
most of them centered on different facets of the
perpetual themes of performance and efficiency.
Perhaps ironically, the resurgence of interest in
FP languages owes a lot to Java’s popularity. Like
many FP languages, Java is based on a virtual
machine (VM), and its popularity has driven sig-
nificant investments in research and development
to make VMs more efficient and capable. This has
ultimately helped dispel old notions that VMs are
bulky and slow. Of course, not all FP languages
are VM-based — for example, Objective Caml
(OCaml) is among a number of FP languages that
can be compiled to either bytecode or native ma-
chine code, and it can achieve performance on
par with or even exceeding that of C language
programs. Never theless, FP languages have gen-
erally gained much from the significant improve-
ments Java has brought to the VM world.

Another reason for the heightened interest in
FP is the move toward multicore architectures.
Though not universally agreed upon, some believe
that languages based on the mathematical notions
of functions, which have no side effects, are bet-
ter for producing software that can make the most
of multicore systems. This belief is based on the
notion that code that’s free of side effects is easier

Welcome to
“The Functional Web”
By Steve Vinoski • Verivue

continued on p. 102

The Functional Web

102 www.computer.org/internet/ IEEE INTERNET COMPUTING

to schedule and execute correctly in
concurrent threads than code that
shares mutable data areas across mul-
tiple threads. In Erlang, for example,
variables are immutable — once bound
to a value, they can’t be changed —
and there are no global variables. As
a result, Erlang can support highly
concurrent applications for which de-
velopers need not write code to cre-
ate and manage synchronization and
locking among multiple threads. As
multicore systems have become more
commonplace, interest has risen in FP
languages — like Erlang — that offer
strong concurrency support.

Still another explanation for FP
languages’ rising popularity is that
developers look to them for the oppor-

tunity to get more done with less. Im-
perative languages such as Java and
C++ have come to be known as “high
ceremony” languages because of the
often mind-numbing amount of syn-
tactic boilerplate and complex object
interaction patterns they impose just
to get relatively simple applications up
and running. Many developers turn
to interactive development environ-
ments (IDEs) to help them manage this
verbosity and complexity, but, in my
opinion, this just works around the
real problem rather than solves it. By
comparison, FP languages are gener-
ally far more expressive, so they tend
to let programmers state much simpler
and briefer solutions.

This last point about programmers
getting more done with less, contro-
versial I’m sure, is what attracted
me to my current work with FP lan-

guages and to Erlang in particular.
After years of developing distributed
middleware systems in C++ and Java,
I figured there simply had to be a
better way. Make no mistake, the de-
velopment teams I worked with were
staffed with talented and knowledge-
able engineers who were more than
capable of developing working, robust
middleware frameworks and libraries
in Java and C++. Nevertheless, the
more experience I gained with help-
ing to build such systems, the more
it seemed to me that we invested an
excessive amount of time and effort
trying to arrange classes and objects
into just the right set of abstractions
that would enable a quantum leap in
our ability to build distributed sys-
tems. Despite the fact that our frame-

works and libraries “worked” in the
sense that they helped their users
build distributed applications, I don’t
believe we ever came up with precise-
ly the right abstractions to actually
achieve that quantum leap.

After pondering this problem for
years, I finally concluded that our ef-
forts were ultimately most impeded
by the programming languages we
chose. C++ and Java affected how we
thought about problems, as well as
the shapes of the solutions we came
up with, far more deeply than I be-
lieve any of us realized. Add to that
the verbosity and ceremony of these
languages, and the net result is that
we wrote, debugged, maintained,
and extended a significant amount
of code that wasn’t directly help-
ing us get to our ultimate goal. We
were fundamentally blocked by our

inability to change our chosen pro-
gramming languages into vehicles
for application distribution.

Using the wrong languages like
this can impose a much larger tax
on development efficiency than
you might realize. Like the prover-
bial frog in the pot of water on the
stove, eventually boiling to its de-
mise as the water temperature slowly
increases because it can’t sense the
changes until it’s too late, developers
who primarily use popular impera-
tive languages like Java and C++ can
become so accustomed to the boiler-
plate, verbosity, and ceremony these
languages require that they simply
don’t realize just how inefficient
their development efforts really are.
Given how defensive such languages’
users can often be, perhaps this form
of programming language loyalty is
a less sinister variant of Stockholm
syndrome, where captives counter-
intuitively develop a sense of devo-
tion and emotional attachment to
their captors.

In my experience, the number of
lines of code in a system matters a
great deal. A system that provides
the same capabilities as another but
in orders of magnitude fewer lines
of code tends to be more straight-
forward to develop and debug, and
vastly easier to maintain and ex-
tend. The reason is pretty straight-
forward: with the smaller system, a
much greater chance exists that one
developer can keep the whole system
in his head. Once a system gets to be
so large that no single developer has
a hope of understanding all parts of
the code, it becomes much harder to
preserve system integrity, correct-
ness, extensibility, and overall qual-
ity. Judging from my own efforts, FP
languages generally allow systems to
be stated succinctly and with much
less syntactic overhead than impera-
tive languages.

FP: No Stranger to the Web
Using and applying FP languages

After pondering this problem for years, I finally
concluded that our efforts were ultimately
most impeded by the programming languages
we chose.

continued from p. 104

MARCH/APRIL 2009 103

Welcome to “The Functional Web”

and techniques for Web development
is nothing new. Over the years, de-
velopers have created myriad Web
sites using languages such as Perl,
Python, and Ruby — each providing
features borrowed from the FP world.
One important aspect of FP is the
notion of higher-order functions in
which functions accept other func-
tions as arguments and return func-
tions as results. It’s quite common in
Ruby, for example, to pass blocks as
arguments to other functions. Ruby
blocks are essentially anonymous
functions that cooperate with the
functions that receive them in order
to extend and specialize those receiv-
ers. Characteristically, this feature is
incredibly powerful, given that it al-
lows for very flexible extension and
specialization, yet without the ver-
bosity and rigid hierarchy typically
imposed by inheritance in OOP.

On the client side, Web developers
have over the years made increasing
use of JavaScript — a language that’s
far better and more capable than
many give it credit for and one that
also incorporates some FP features.
JavaScript functions can be passed
as arguments and returned as values;
anonymous functions and closures
are quite commonly used, as are op-
erations such as mapping and fold-
ing over lists. These operations are
also frequently applied to JavaScript
objects, which are essentially tables
of name and value pairs.

For cross-browser portability,
many Web developers choose to use
JavaScript together with a framework
or library. My favorite JavaScript li-
brary at this time is jQuery (see http://
jquery.com), in part because it favors
and promotes writing code in an FP
style. I intend to cover jQuery in more
detail in an upcoming column.

At this time, the language I use
for most of my professional software
development is Erlang. It was origi-
nally designed before the Web came
into existence; nevertheless it’s gar-
nering a lot of attention these days

as a Web service development lan-
guage. This is because it’s excellent
for developing distributed server ap-
plications that are highly concurrent,
very scalable, and amazingly robust
— all important Web service proper-
ties. Perhaps the most famous Erlang
Web server is Yaws (see http://yaws.
hyber.org), written starting roughly
seven years ago by Claes “Klacke”
Wikström, now of Tail-f Systems.
Yaws, which is open source and
freely available, supports a variety
of ways for developers to implement
Web services. I’m personally partial
to Yaws because I actively contribute
to it and help maintain it, so I in-
tend to devote an upcoming column
to it, but it’s not the only Erlang Web
server around. Another solid entry

is MochiWeb (see http://code.google.
com/p/mochiweb), originally written
by Mochi Media’s Bob Ippolito and
also open source and freely available.
It’s a favorite of Web service develop-
ers who prefer a straightforward, no-
frills service framework. Developers
use both Yaws and MochiWeb very
successfully in production systems.

The capabilities and benefits of FP
languages like Erlang and Haskell, a
pure FP language with strong support
for type inferencing as well as consid-
erable control over side effects, have
not gone unnoticed in the imperative
world. The continuing evolution of
the Java VM to a multilanguage plat-
form has resulted in the development
of new languages — such as Clojure,
a modern Lisp, and Scala, a multi-
paradigm language that supports FP
— that run on that platform. Future
columns will discuss these languag-
es, and in particular, the Scala Lift
framework (see http://liftweb.net), a
Web framework that unites new with

old — it lends itself to elegant solu-
tions consisting of just a few lines of
code, while also providing access to
existing Java libraries.

O f course, RESTful Web service
development and deployment

have many aspects — not all about
writing code. Regardless of what
programming language they use,
Web developers also have to deal
with production concerns such as
Web protocol and data format stan-
dards, security worries, issues re-
lated to integrating with databases
and back-end middleware services,
and deployment considerations such
as scale, uptime, provisioning, up-
grades, and logging. Because of the

history of FP languages, many devel-
opers still view them with suspicion
when it comes to such production
concerns. Fortunately, FP languages
today are generally more produc-
tion-ready than they’re given credit
for, so I intend to make sure future
“Functional Web” columns address
these and other real-world concerns.

The goal of this brand new col-
umn is to investigate the application
of FP languages and techniques to the
world of production-quality RESTful
Web service development, but this
first column has barely scratched the
surface. If there are particular topics
or concerns in this area you’d like me
to cover here, please don’t hesitate to
email me.

Steve Vinoski is a member of the technical

staff at Verivue in Westford, Mass. He’s

a senior member of the IEEE and a mem-

ber of the ACM. You can read Vinoski’s

blog at http://steve.vinoski.net/blog/ and

reach him via vinoski@ieee.org.

Developers use both Yaws and MochiWeb very
successfully in production systems.

