
The Functional Web

84 Published by the IEEE Computer Society 1089-7801/11/$26.00 © 2011 IEEE IEEE INTERNET COMPUTING

H askell is an advanced functional pro-
gramming language. The product of more
than 20 years of research, it enables rapid

development of robust, concise, and fast soft-
ware. Haskell supports integration with other
languages and has loads of built-in concurrency,
parallelism primitives, and rich libraries. With
its state-of-the-art testing tools and an active
community, Haskell makes it easier to produce
flexible, maintainable, high-quality software.
The most popular Haskell implementation is
the Glasgow Haskell Compiler (GHC), a high-
performance optimizing native-code compiler.

Here, we look at Snap, a Web-development
framework for Haskell. Snap combines many
other Web-development environments’ best fea-
tures: writing Web code in an expressive high-
level language, a rapid development cycle, fast
performance for native code, and easy deploy-
ment in production.

Why Is Haskell Good
for Web Programming?
Haskell lets you write elegant, high-level code
that rivals the performance of lower-level,
imperative languages. You can write declara-
tive programs at a high level of abstraction and
expressiveness, while still maintaining excel-
lent performance. When you need to do bare-
metal bit-twiddling or need access to a C library
that doesn’t yet have a Haskell equivalent, its
foreign function interface lets you easily drop
down to C.

Writing solid, real-world code is easier in
Haskell than in other languages. It has strong
static typing, so many common programming
errors, such as null pointer exceptions, can’t
occur. You can separate an application’s core
logic from the parts that must interact with the
outside world: “pure” functions in Haskell, given

the same inputs, always produce the same out-
put. This property means that you almost always
decompose a Haskell program into smaller con-
stituent parts that you can test independently.
Haskell’s ecosystem also includes many power-
ful testing and code-coverage tools.

Haskell also comes out of the box with a set
of easy-to-use primitives for parallel and con-
current programming and for performance pro-
filing and tuning. Applications built with GHC
enjoy solid multicore performance and can han-
dle hundreds of thousands of concurrent net-
work connections. We’ve been delighted to find
that Haskell really shines for Web programming.

What’s Snap?
Snap offers programmers a simple, expressive
Web programming interface at roughly the same
level of abstraction as Java servlets. It includes a
fast, built-in HTTP server that drives application
logic, so you can quickly create high-performance
Web applications. Unlike some other Web frame-
works in higher-level languages, Snap lets you
consume request data and stream response data
using a constant amount of memory.

Snap features excellent documentation and
tutorial materials, and, for a young project, it’s
quite robust. Haskell’s testing tools let you eas-
ily write a test suite with a high level of cover-
age. Snap uses Haskell’s cross-platform libraries
to run on all major operating systems. A Snap-
based application also supports rapid develop-
ment — an app running in development mode
will load changes to your source code as soon
as you make them. When you put your code into
production, you can create a single, fast, stand-
alone executable that’s easy to deploy.

We designed Snap for efficiency; where
appropriate, we use fast system calls such as
sendfile() and epoll(). On older versions of

The Snap Framework
A Web Toolkit for Haskell

Gregory Collins • Google Switzerland
Doug Beardsley • Karamaan Group

The Snap Framework

JANUARY/FEBRUARY 2011 85

GHC, we have an optional binding
to the libev C library for high-scal-
ability I/O event scheduling.

Getting Started with Snap
Snap requires the Haskell platform
(http://hackage.haskell.org/platform),
which ships with a binary installer
for most major platforms. The
Haskell platform includes the GHC
compiler, documentation, libraries,
and tools; think of it as “Haskell:
batteries included.”

Once you’ve installed the Haskell
platform, you can download, build,
and install Snap’s framework and
all its dependencies using the cabal
package manager:

$ cabal update
$ cabal install snap

The Snap installation builds the
snap executable, which you can use
to get started with a basic Snap proj-
ect. By default, cabal installs exe-
cutables to $HOME/.cabal/bin; the
following instructions assume that
this directory is on your $PATH.

To set up a new example Snap
project (which is intended for use as
an example or jumping-off point for
your own Snap Web applications),
run these commands:

$ mkdir myproject
$ cd myproject
$ snap init

The snap init command creates
a skeletal Snap project in the current
directory. This is a complete work-
ing Snap application that doesn’t do
much but that you can modify to
start fleshing out your first project.

The snap init command creates
the Main module for this project in
src/Main.hs. When you build this
project with cabal install, an
executable called myproject is cre-
ated in $HOME/.cabal/bin. To build
and run the example application,
execute these shell commands:

$ cabal install
$ myproject -p 8000

Now, point your Web browser to
http://localhost:8000/; the server
should respond with the default
canned response.

Programming with Snap:
A Simple Example
Let’s look more closely at what’s in
the default skeleton application.
(This article describes a prerelease
version of Snap 0.3, which is sched-
uled to be released before this issue
goes to print. Some details might
change slightly.)

The snap init command creates a
few files in the src/ subdirectory, the
important ones being Application.
hs, which contains the application’s
state definitions, and Site.hs, which
contains your site’s Web handlers.

First, let’s look at some code from
Application.hs:

type Application = SnapExtend
ApplicationState

This line indicates that your applica-
tion extends the Snap type (the type
of basic Web handlers without any
associated in-memory state) with

the ApplicationState type, which
we’ll define next (see Figure 1).

Snap applications hold some state
in memory that they use to service
requests. Things in this category
include templates and caches. In our
particular case, ApplicationState
contains the set of templates we use
to service user requests (using our
heist templating library), as well as
a TimerState, an example extension
that stores the last time the applica-
tion was reloaded.

Application.hs also includes
code to initialize the application on
load or reload. In Snap, we call this
code an Initializer, which handles
a Snap application’s startups, reloads,
and cleanup (see Figure 2). This code
loads all the template files from the
resources/templates directory, ini-
tializes the reload timer, and creates
our ApplicationState object.

Let’s turn our attention to src/
Site.hs, which contains our appli-
cation’s Web handler code. The skele-
ton application contains two example
handlers. One answers requests to get
the site’s root page; the other answers
requests to /echo/foo by printing
a message containing the foo input
string (see Figures 3 through 5).

You can read this as, “If we’re

data ApplicationState = ApplicationState
 { templateState :: HeistState Application
 , timerState :: TimerState
 }

Figure 1. The ApplicationState data type contains in-memory application
state, which persists between requests.

applicationInitializer :: Initializer ApplicationState
applicationInitializer = do
 heist <- heistInitializer “resources/templates”
emptyTemplateState
 timer <- timerInitializer
 return $ ApplicationState heist timer

Figure 2. An Initializer handles a Snap application’s startup, reloads, and
cleanup.

The Functional Web

86 www.computer.org/internet/ IEEE INTERNET COMPUTING

at the root page, bind the follow-
ing HTML tags and render the index
template.” A splice, in heist par-
lance, is a procedure you can bind
to an XHTML tag that produces
markup that gets spliced into the
HTML output. Here, we’re saying
that the <start-time/> tag should
report the time the server was last
restarted and that the <current-
time/> splice should report the cur-
rent Web server time. Looking at

resources/templates/index.tpl,
you can see these splices at work (see
Figure 4).

The handler in Figure 5 picks the
stuff parameter out of the request’s
parameter map (we’ll explain where
that comes from in a second), URL-
decodes it, binds the resulting mes-
sage to a splice, and renders the
echo template.

Finally, we can look at the main
handler entry point (see Figure 6).

This sets up a routing table for the
site’s URLs. Requests for the / URL
are routed to the index handler;
requests for /echo/foo are routed
to the echo handler after we set
stuff=foo in the request’s param-
eter map.

The site handler’s second half,
after the main routing table, serves
any files from the disk. The a <|> b
syntax means “try a; if it fails, try
b.” In this case, if the user requests
a URL that doesn’t match any of the
routing-table entries — for exam-
ple, /screen.css — the fileServe
function tries to find the file under
the resources/static directory
and serves it back to the user if it’s
found. If fileServe can’t find the
file, the fileServe handler fails,
causing the site handler to fail,
which causes Snap to produce a “404
Not Found” response.

Benchmarks
We compared Snap to five common
Web frameworks: Ruby on Rails 2.3.5
(using the internal server), Grails
1.2.2, Apache 2.2.16, PHP 5.2.14, and
Node.js 0.2.4.

Our comparison involved two
benchmarks, which we ran on a
quad-core Xeon machine running at
2.33 GHz. The pong benchmark (see
Figure 7a) is basically “Hello, World!”
It responds to requests by sending
the string pong. (For the Apache/PHP
line in this figure, we used Apache
to serve the file and Apache with
mod_php to issue the pong response.)
The file benchmark (see Figure 7b)
measures how fast each server can
send a single 49-Kbyte image file.
We obtained the benchmark num-
bers by using the popular httperf
benchmarking tool.

Snap performed fairly well.
With logging turned on, it served
files roughly 40 percent faster than
Apache; with logging turned off, it
was more than 2.5 times as fast.

For more information about our
testing methodology, including links

index = ifTop $ heistLocal (bindSplices indexSplices) $
render “index”
 where
 indexSplices =
 [(“start-time,” startTimeSplice)
 , (“current-time,” currentTimeSplice)
]

Figure 3. The root or homepage handler. This handler binds a couple of heist
template splices and renders the index template.

...
<table id=”info”>
 <tr>
 <td>Config generated at:</td>
 <td><start-time/></td>
 </tr>
 <tr>
 <td>Page generated at:</td>
 <td><current-time/></td>
 </tr>
</table>
...

Figure 4. An example of splices in heist. The start-time/ and current-
time/ tags are bound to Haskell code, which renders HTML output.

echo = do
 message <- decodedParam “stuff”
 heistLocal (bindString “message” message) $ render “echo”
 where
 decodedParam p = fromMaybe <*> urlDecode <$> fromMaybe “”
<$> getParam p

Figure 5. The /echo handler. This code answers a request to /echo/foo by
printing a message containing the string foo.

The Snap Framework

JANUARY/FEBRUARY 2011 87

to the source code, visit http://snap
framework.com/benchmarks.

What’s in Store for Snap?
Haskell is a great language that
tends to inspire a quasireligious
devotion among its adherents. This
isn’t necessarily because Haskell
programmers are dogmatic or driven
by concerns of ideological purity. It’s
because the qualitative experience
of hacking in Haskell, once you’ve
learned it, induces a Zen-like calm
that few other languages come close
to approaching. Compared to tradi-
tional imperative languages, Haskell
often feels like slipping into a warm
bath. Once you’ve gotten your pro-
gram past the type checker and
QuickCheck has tested your code
against thousands of randomly gen-
erated test cases, you can feel com-
fortable that your program works
correctly, with a lot less anxiety,
sweat, and tears.

The flip side is that Haskell’s
learning curve is fairly steep. Pro-
grammers coming from traditional
languages must unlearn many pro-
gramming habits that serve them
well in other languages. This is
because Haskell is fundamentally
different — even basic things, such
as how values are computed from
expressions, are different and unfa-
miliar. However, Haskell’s popular-
ity has increased exponentially in
recent years, and we’re hopeful that
more programmers will take the time
to check out a language that offers
many tangible advantages.

Snap is a young library early in
its evolutionary life cycle. The basic
core is solid, and we plan to add fea-
tures such as file upload support,
HTML5 parsing, user authentication,
and facilities for building larger Web
applications out of smaller, plugga-
ble parts. This is largely a question
of time and manpower; we’re confi-
dent we’ll be able to offer a complete
set of Web-programming facilities.
However, up to now, we’ve concen-

trated on building a stable, effi-
cient substrate upon which to build
higher-level features.

S nap is seeing some early adop-
tion. Right now, we believe it’s

most interesting to Web developers
who care about performance and
expressiveness and who enjoy roll-
ing up their sleeves and learning
about exciting new techniques to
build fast, solid Web applications.
We welcome contributions of bug
reports, requests for improvement,
and especially code. If you’d like

to contribute or experiment with
Snap, more information, tutorials,
and documentation are available at
http://snapframework.com.

Gregory Collins is a site reliability engineer

at Google Switzerland. Contact him at

greg@gregorycollins.net.

Doug Beardsley is a quantitative developer

at the Karamaan Group. Contact him at

mightybyte@gmail.com.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

site = route [(“/,” index)
 , (“/echo/:stuff,” echo)
]
 <|> fileServe “resources/static”

Figure 6. The top-level site handler. It handles a couple of URL endpoints (/
and /echo) and shows an example of chaining together Snap handlers with
the <|> operator.

0 2,000 4,000 6,000 8,000 10,000 12,000
File benchmark

Snap (no logging)

Node.js (no logging)

Snap (w/ logging)

Apache (+ PHP) w/ logging

Grails

RoR (no logging)

0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000

Pong benchmark

Snap (no logging)

Node.js (no logging)

Snap (w/ logging)

Apache (+ PHP) w/ logging

Grails

RoR (no logging)

(a)

(b)

Figure 7. Comparing Snap with other common Web frameworks using the (a)
pong and (b) file benchmarks; values in requests per second (higher is better.)

