
The Functional Web
Editor: Steve Vinoski • vinoski@ieee.org

2 	 Published by the IEEE Computer Society	 1089-7801/12/$31.00 © 2012 IEEE� IEEE INTERNET COMPUTING

T oday’s Web has brought an end to the
old programming model based entirely
on a single-box architecture — a model

that assumes no barriers of distribution and
desperately seeks a unique, generalized rep-
resentation of data. With the emergence of
software as a service (SaaS) and Web services,
data distribution is the norm, rather than the
exception. Distributed data offers an opportu-
nity to better reflect enterprise organization,
which is commonly divided into services and
business processes. It also fosters scalability
through data replication and utilizes exist-
ing Web services to help us avoid reinventing
the wheel. But with this change, new prob-
lems have arisen: stream management, scal-
ability, and the management of various data
formats.

Play is an open source framework for Web
application development created in 2007 and
opened to the community in 2009. It targets
the Java Virtual Machine (JVM) and focuses
on simplicity, developer productivity, and
HTTP/Web friendliness. Play implements the
classic model-view-controller (MVC) archi-
tecture with a route f i le that maps HTTP
requests to controllers, which then take
request information and produce an HTTP
result representation, optionally using a view
template. Play then serializes this result rep-
resentation and returns it as a response to the
client.

Here’s an example of a route line in the
routes file:

Display a client.
GET /greeting/:name

controllers.Application.greeting
(name: String)

The corresponding controller method is a func-
tion that takes a request and returns an HTTP
result (“200 OK” in this case):

def greeting(name: String) = Action
{ request =>

 Ok("Hello "+ name)
}

The name parameter passed to the greeting
function comes from the target resource’s URL,
as specified in the routes file.

As the Play community grew, the evolu-
tion of the Web and associated technologies led
the team behind Play to evolve the framework
to address emerging Web programming chal-
lenges. Here, I examine the main features of
Play2 and highlight how functional program-
ming is the key to offering a programming
model that addresses today’s problems without
introducing additional complexity.

Data Manipulation
Application and data distribution lead to hetero-
geneous data representations and formats. A fair
amount of code in a given program is dedicated
to producing and consuming these formats —
that is, joining and transforming them into a
model that’s meaningful for a particular result-
ing functionality or service. A familiar example
would be calling several Web services to retrieve
data in popular XML and JSON formats, picking
some data from each feed, and then combining
these into a new JSON, XML, or even HTML
document that represents the final result.

A standard approach in the old single-box
architecture was to bend the datastore model
to look exactly like the service model. This
approach was motivated by the possibility of

Play2: A New Era of Web
Application Development

Sadek Drobi • Zenexity

IC-16-04-Funw.indd 2 5/17/12 5:09 PM

Play2: A New Era of Web Application Development

JULY/AUGUST 2012� 3

completely mastering data and stor-
ing it all in one place. In the new Web
application development model, you
must have tools that allow for data
manipulation and transformation.

Play2 natively supports the Scala
programming language, which lever-
ages a very rich collections API that
makes data manipulation — such as
grouping, transforming, and joining —
much simpler by employing higher-
order functions and immutable data
structures. Play2 also extensively
uses immutability and higher-order
functions, making it both a natural
fit and a coherent environment for
Web-oriented architecture (WOA).

The following example uses the
Scala collections API to perform
some ordinary operations on a client
list to obtain each client’s monthly
spending:

val monthlySpending =
 getOrdersForClient(id)
 .groupBy(order => order.

month)
 .mapValues(orders =>

orders.map(o =>
o.amount).sum)

This code shows the use of higher-
order functions for data manipula-
tion, a simple, powerful practice that
most mainstream languages ignore.

Play2 also chooses to deal directly
with JSON, XML, and HTML formats
instead of trying to abstract them
using some runtime magic, which
can often result in weaker and less
useful custom structures. Indeed,
these data formats have interest-
ing recursive structures that can be
handy when used in the right place.
Figure 1 transforms the results of
two Web calls that are in XML and
JSON into HTML using truthful rep-
resentations of these formats and the
map higher-order function.

Signal Processing
The single-box architecture assumes
that all components are always

available, or, if they aren’t, that we
can do nothing about it except report
an internal server error to the user
and hope the component will be back
shortly.

This assumption doesn’t hold in
modern Web development. Indeed,
several distr ibuted services are
involved in most Web services; some
are essential to the final Web ser-
vice result, others are optional, and
some are available from multiple
servers (via replication). Continuing
to send an internal server error to
the Web service client when any of
these services is absent or in error
has become unreasonable. Instead,
we must be more explicit in dealing
with signals returned from different
services. Take, for example, an HTTP
service call; it could return a “200
OK” status, but it could also return a
“404 Not Found” (signaling that the
requested resource doesn’t exist), a
“400 Bad Request,” or any other use-
ful HTTP status that could help our
Web service decide how to deal with
the situation. Depending on the cir-
cumstances, it could retry, deduce

the related error and return it to the
user, or even ignore the error.

Mainstream languages use run-
time exceptions to deal with situa-
tions that might not be handled at
the call site but rather in a different
functional layer. As the name sug-
gests, using this approach should be
exceptional; thus it isn’t optimized
for ubiquitous use.

To address this issue more ade-
quately, Play2 doesn’t try to hide
or abstract such signals, but rather
deals with them using all the facili-
ties functional programming pro-
vides. Among others, the Either and
Option types are very convenient
for dealing with multiple signals at
a time, given functions such as map,
flatMap, filter, and so on.

Option[A] represents a value
that can either be present or not. Its
two subclasses, Some[A] and none
do just this. On the other hand,
Either[A,B] represents a value that
can be either A or B. It also has sub-
classes, Left[A] and Right[B]. Both
types implement map and flatMap
methods, which let us focus on a

val eventDescriptionXml = …
val eventAttendeesJson = getAttendees(eventDescriptionXml \

"id" text)
val event = new Event(
 id = eventDescriptionXml \ "id" text,
 name = eventDescriptionXml \ "name" text,
 desc = eventDescriptionXml \ "description" text,
 attendees = (eventAttendeesJson \ "list").map(a =>

(a \ "email").as[String])
)
(a)

@(event: Event)
<h1>@event.name</h1>
Attendees:

 @for(a <- event.attendees) {
 @a
 }

(b)

Figure 1. XML and JSON formats manipulation. We can transform two Web
calls in (a) XML and JSON into (b) an HTML template using Play2.

IC-16-04-Funw.indd 3 5/17/12 5:09 PM

The Functional Web

4	 www.computer.org/internet/� IEEE INTERNET COMPUTING

potentially contained interesting
value in a context without dropping
the other possibility. In the Either
type, we choose our focus (Left or
Right) and pass a function to then
transform it (see Figure 2).

Reactive Composition
When your application is based on
distributed services, and answering
the client’s requests involves calling
and composing the results of several
such services, then you can’t ignore
the latency involved and couple your
resource consumption to the perfor-
mance of servers you depend on.

Let’s imagine our service’s purpose
is to retrieve the user’s profile. This
will involve calling the service that
can provide this basic information,
another service that provides the user’s
last orders, and a third service that
returns last visited items. This means
that for one Web request-response, the
application sends three requests, with
possible interdependence among them.

The classic model is to give each
incoming request an execution thread
that it will keep until the server
sends the response back to the user.
However, when calling services on a
different server, our machine won’t

be doing any computation, but will
rather just be waiting for responses
while holding scarce resources such
as threads and their dedicated mem-
ory. This approach is, of course, a
blocking I/O model. If the user’s
request takes one second to complete
(waiting on the three other requests
to complete), we’ll be blocking one
thread and its associated memory
unnecessarily for that one second.
Consequently, our server will have
a hard time scaling up to more than
100 or so users per second, while the
CPU is idle most of the time. Modern
operating systems, however, offer
primitives for doing nonblocking I/O
using a notification mechanism that
lets the caller know that some data is
available for consumption.

The Play2 architecture is based
entirely on a reactive model that uses
Promises to reflect these nonblocking
opportunities. A Promise is a type that
represents a value that will eventu-
ally be present. It lets you use the map,
flatMap, and other functions to focus
on transforming the value by passing
transformation functions, taking care
of synchronization, combining dif-
ferent callbacks, and handling other
plumbing code. Not only can you

send your requests asynchronously,
but you can also collect notifica-
tions and decide to react on them.
Promises provide a way to describe
the service result composition in a
declarative way while having con-
trol over error cases. Note that the
API used for composing Promises
is similar to the one for composing
collections and Option and Either
types.

Play2 lets you return a Promise
of an HTTP response instead of
an actual response, and it will write the
actual response to the user’s socket
once it’s available, without block-
ing (see Figure 3). Alternatively, we
can use the “for” expression syntax,
which the compiler will translate to
map and flatMap calls (see Figure 4).

Play2 provides the opportunity to
return a Promise of result represent-
ing the response that will be even-
tually sent to the user. This Promise
could be a result of composing
multiple Promises of different non-
blocking/reactive calls.

Reactive Streams
Reactive programming with Promises
fits best when the request and the
response are each entirely contained
in a single chunk. However, Web pro-
gramming presents many situations
in which fitting the entire request or
response in one chunk isn’t reason-
able space-wise (with regard to either
memory or disk). This is especially the
case for big file transfers and progres-
sive stream computing. We must also
consider the increasing interest in the
latest HTTP specifications that enable
message streaming such as WebSocket
(bidirectional messaging), Server-
Sent Events (http://dev.w3.org/html5/
eventsource/), and the classic HTTP
1.1 chunked transfer mode.

Thus, we need a model that lets
us create, consume, and manipulate
different data streams reactively but
easily. Play2 implements a variation of
the Iteratee I/O model explained next
that natively integrates Promises.

val response: Either[Response,Response] =
 WS.url("http://someservice.com/post/123/comments").focusOnOk

val responseOrUndesired: Either[Result,Response] = response.
left.map {

 case Status(4,0,4) => NotFound
 case Status(4,0,3) => NotAuthorized
 case _ => InternalServerError
}

val comments: Either[Result,List[Comment]] =
 responseOrUndesired.right.map(r => r.json.as[List[Comment]])

// in the controller

comment.fold(identity, cs => Ok(html.showComments(cs)))

Figure 2. Dealing with multiple Web service signals. This example shows how
to manage focus on a particular response case while maintaining the other
cases using the Either type in Play2.

IC-16-04-Funw.indd 4 5/17/12 5:09 PM

Play2: A New Era of Web Application Development

JULY/AUGUST 2012� 5

Iteratee was initially introduced in
the Haskell programming language
community as a model for doing
composable I/O.

Many materials, including Play2
documentation, provide a detailed
insight into the Iteratee programming
model. I focus here on showing tasks
for which you can use Iteratees
and progressive stream program-
ming within Play2.

Stated simply, an Iteratee
describes how to progressively con-
sume data chunks and compute a
result from them. An Enumerator is
a data source that takes an Iteratee
and eventually returns an Iteratee,
possibly in a new state. Clearly, the
source cont rols the execut ion,
and the Iteratee will react only
to the passed data chunks. On each
chunk, an Iteratee can return one
of three states: "Done" with a com-
puted result, "Cont" with a callback
accepting more input, or "Error"
with a message and the chunk that
caused the error. This provides a
powerful primitive for implement-
ing a full API that deals with data
streams reactively, including creat-
ing, transforming, filtering, com-
bining, and consuming them. To
illustrate, let’s look at a few scenarios
for handling data streams.

Progressive Stream
Processing with File Uploads
In an HTML form, a user chooses a
10-Mbyte file and hits the upload
button. The user’s browser then sends
the file as chunks to the Web server.
Most Web servers offer no choice but
to put the whole file into memory or
to save it on disk. In many cases, the
content goes directly to a dedicated
service, such as Amazon S3 storage,
to avoid the complexity of managing
and storing files. This simply means
that temporarily storing the file on
the server is completely useless.
Actually, with simple math, we can
determine that 100 such users would
consume almost 1 Gbyte of memory

or disk space for their files. A better
scenario would be to directly forward
the chunks into the service without
storing anything. This is what Play2
offers through the Iteratee I/O in its
action API:

val bodySize:BodyParser[Int] =
BodyParser { rh =>

 Iteratee.fold[Array[Byte]]
(0){ (s,bytes) =>

 s + bytes.length
 }
}

def countBodySize =
Action(bodySize) { rq =>

 Ok("request's body size is "+
rq.body)

}

A more sophisticated signature
of an action in Play2 is the one that
takes a BodyParse: an Iteratee that
parses the request body and returns a
body or some HTTP result. The HTTP
result allows the body parser to return
directly to the client (in case the body
isn’t appropriate, for instance).

def userInfo(...):Promise[JsValue] = {

 val profilePromise = WS.url(...).get()
 val attachedEventsPromise = WS.url(...).get()
 val topArticlesPromise = WS.url(...).get()

 profilePromise.flatMap { profile =>
 attachedEventsPromise.flatMap { events =>
 topArticlesPromise.map{ articles =>
 Json.obj(
 "profile" -> profile,
 "events" -> events,
 "articles" -> articles)
 }}}

Figure 3. Composition of reactive IO calls. Using promises in Play2 allows you
to compose reactively nonblocking IO calls with map and flatMap.

for {
 profile <- profilePromise
 events <- attachedEventsPromise
 articles <- topArticlesPromise
 } yield Json.obj(
 "profile" -> profile,
 "events" -> events,
 "articles" -> articles)

 }

// in the controller

def showInfo(...) = Action { rq =>
 Async {
 actorInfo(...).map(info => Ok(info))
 }
}

Figure 4. Returning a Promise that will eventually yield an HTTP response
to the user.

IC-16-04-Funw.indd 5 5/17/12 5:09 PM

The Functional Web

6	 www.computer.org/internet/� IEEE INTERNET COMPUTING

One question that comes to mind
while looking at this example is, what
happens if the user uploads the file
faster than the server uploading to
the dedicated service? One thing we
must avoid at any price is buffering
the chunks in the server, thus filling
memory. Play2, being completely reac-
tive, will slow down the upload speed
depending on the body parser’s speed:

val slowBodySize:BodyParser[Int] =
BodyParser { rh =>

 Iteratee.fold1[Array[Byte]]
(0){ (s,bytes) =>

 Promise.timeout(s + bytes.
length, 100)

 }
}

Each t ime t h i s body pa r se r
receives a chunk of bytes, it’s tak-
ing, reactively, 100 milliseconds to
increase the computed size. Play2 will
adapt the upload rate accordingly.

Server-Sent Events
In modern Web programming, open
uni- or bidirectional sockets for mes-
sages and notifications between the
server and the client are gaining
momentum, be it WebSocket, HTTP
Server-Sent Events, or Comet (long poll-
ing) through HTTP 1.1 chunked trans-
fer mode. This enables interactiveness
between the client and server and has
applications in business and gaming.

To use these streams effectively,
however, we need a high-level API
for managing different aspects of
the streams, such as dispatching to
different users or roles, handling
security, filtering, and broadcasting.
Play2 implements a set of methods on
top of Iteratees (acting as reactive
stream consumers), Enumerators (which
act as the source), and Enumeratees
(which act as adapters) and uses the
Iteratee I/O model to implement these
sockets and protocols.

To create a Stream, we can use
one of the available APIs for creating
an Enumerator. We use a callback

function each time the consumer is
ready for more input:

val aStreamOfDates =
Enumerator.fromCallback
{ () =>

 Promise.timeout(Some(new
Date), 100 milliseconds)

}

Another way to create a stream is to
imperatively push chunks into it:

val channel = Enumerator.
pushee[String] { onStart =
pushee =>

 pushee.push("Hello")
 pushee.push("World")
}

Enumeratees, on the other hand,
are instrumental for manipulating
streams. Play2 includes a set of
APIs for creating Enumeratees that
vary from simple transformation to
sophisticated progressive search or
chunks grouping:

// create an Enumeratee using
the map method on Enumeratee

val toInt:
Enumeratee[String,Int] =
Enumeratee.map[String]{ s =>
s.toInt }

This Enumeratee will transform each
chunk from string to Int. Play2
accepts an Enumerator for pushing
into an out socket:

def dateStream = {
 val stream = aStreamOfDates &>
 Enumeratee.map(d =>

d.toString) ><>
 EventSource[String]()

 Ok.feed(stream).
withHeaders(CONTENT_TYPE
->"text/event-stream")

}

This code illustrates publishing a
stream of date values. EventSource

is an Enumeratee that will wrap
each data chunk into the necessary
metadata for the Server-Sent Event
protocol.

Enumerators à la Carte
One way to model applications pub-
lishing different streams is to imple-
ment a set of primitive streams and
then combine them differently in
different contexts or even dynami-
cally on demand. Let’s imagine we’re
publishing monitoring data about a
system:

object AvailableStreams {

 val cpu: Enumerator[JsValue] =
(/* code here */)

 val memory:
Enumerator[JsValue] =
(/* code here */)

 val threads:
Enumerator[JsValue] =
(/* code here */)

 val heap: Enumerator[JsValue] =
(/* code here */)

}

We can now combine these for a cer-
tain screen/user using the interleave
operator '>-':

val physicalMachine =
AvailableStreams.cpu >-
AvailableStreams.memory

val jvm = AvailableStreams.
threads >- AvailableStreams.
heap

We can even have a system of user
preferences for widgets:

def usersWidgets
Composition(prefs:
Preferences) = {

 // do the composition
dynamically

}

Interleaving Enumerators is
just one of many different ways to

IC-16-04-Funw.indd 6 5/17/12 5:09 PM

Play2: A New Era of Web Application Development

JULY/AUGUST 2012� 7

combine these reactive streams of
data. These operations are instru-
mental to handling easily concur-
rent reactive streams and are only
possible due to the powerful Iteratee
model.

Extending Streams
from Other Streams
Another way to model streams is to
start with a general stream of dif-
ferent events and filter or adapt
it depending on the context. Let’s
imagine a stream of a system of
operations; the event type can be
one of two:

trait Event
case class Operation(amount:

Int) extends Event
case class

TechnicalLog(message:
String) extends Event

Given a stream of events

val systemStream:
Enumerator[Event] =
(/* code here */),

we can make a stream for public
users by filtering out technical logs:

val publicStream = systemStream
&> Enumeratee.collect { case
e:Operation(_) => e }

However, we can also let the user
choose his or her level of interest as
a range, and produce an appropriate
stream:

def forRange(min: Int,
max: Int) = publicStream &>
Enumeratee.filter(op =>
op.amount > min && op.amount
< max)

In addition to collect and filter
Enumeratees, Play2 implements other
operations such as take, takeWhile,
drop, dropWhile, grouped, search
(progressive search), scanLeft, and
zip — and, of course, all these operate
on a fully reactive stream. The Iteratee
model lets users reason about reac
tive concurrent streams as if they
were Lists, handling all the synchro-
nization and notifications propagation.

T his overview offers a few insights
into some Play2 features and

illustrates its strategy for putting the
Web’s power in developers’ hands,
rather than abstracting and conceal-
ing its existence. To gain a broader
perspective about the Play2 Web
framework, you can download it at
www.playframework.org — where
you’ll also find documentation — and
experiment with samples. You can
also get help on Play’s mailing list
at http://groups.google.com/group/
play-framework.�

Sadek Drobi is CTO of Zenexity and a soft-

ware engineer specializing in the design

and implementation of enterprise applica-

tions with a particular focus on bridging

the gap between the problem domain and

the solution domain. As a core Play devel-

oper, he works on the design and imple-

mentation of the Play framework. You can

follow him on Twitter at @sadache or via

his blog at http://sadache.tumblr.com.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-16-04-Funw.indd 7 5/17/12 5:09 PM

