
The Functional Web

80  Published by the IEEE Computer Society 1089-7801/10/$26.00 © 2010 IEEE IEEE INTERNET COMPUTING

N ode.js — also called Node — is a server-
side JavaScript environment (see http://
nodejs.org). It’s based on Google’s runtime 

implementation — the aptly named “V8” engine. 
V8 and Node are mostly implemented in C and 
C++, focusing on performance and low memory 
consumption. But, whereas V8 supports mainly 
JavaScript in the browser (most notably, Google 
Chrome), Node aims to support long-running 
server processes.

Unlike in most other modern environments, 
a Node process doesn’t rely on multithreading 
to support concurrent execution of business 
logic; it’s based on an asynchronous I/O event-
ing model. Think of the Node server process as a 
single-threaded daemon that embeds the Java-
Script engine to support customization. This is 
different from most eventing systems for other 
programming languages, which come in the 
form of libraries: Node supports the eventing 
model at the language level.

JavaScript is an excellent fit for this approach 
because it supports event callbacks. For exam-
ple, when a browser completely loads a docu-
ment, a user clicks a button, or an Ajax request 
is fulfilled, an event triggers a callback. Java-
Script’s functional nature makes it extremely 
easy to create anonymous function objects that 
you can register as event handlers.

Multithreading versus Events
Application developers who deal with multiple 
I/O sources, such as networked servers handling 
multiple client connections, have long employed 
multithreaded programming techniques. Such 
techniques became popular because they let 
developers divide their applications into con-
current cooperating activities. This promised to 
not only make program logic easier to under-

stand, implement, and maintain but also enable 
faster, more efficient execution.

For applications such as Web servers perform-
ing significant amounts of I/O, multiple threads 
enable applications to better use available pro-
cessors. Running multiple concurrent threads on 
a modern multicore system is straight forward, 
with each core simultaneously executing a dif-
ferent thread with true parallelism. On single- 
core systems, the single processor executes one 
thread, switches to another and executes it, and 
so on. For example, the processor switches its 
execution context to another thread when the 
current thread performs an I/O operation, such 
as writing to a TCP socket. The switch occurs 
because completing that operation can take 
many processor cycles. Rather than wasting 
cycles waiting for the socket operation to finish, 
the processor sets the I/O operation in motion 
and executes another thread, thus keeping itself 
busy doing useful work. When the I/O operation 
ends, the processor again considers the original 
thread to be ready to execute because it’s no lon-
ger blocked while waiting for I/O.

Even though many developers have suc-
cessfully used multithreading in production 
applications, most agree that multithreaded 
programming is anything but easy. It’s fraught 
with problems that can be difficult to isolate and 
correct, such as deadlock and failure to protect 
resources shared among threads. Developers 
also lose some degree of control when draw-
ing on multithreading because the OS typically 
decides which thread executes and for how long.

Event-driven programming offers a more 
efficient, scalable alternative that provides devel-
opers much more control over switching between 
application activities. In this model, the applica-
tion relies on event notification facilities such as 

Node.js: Using JavaScript 
to Build High-Performance 
Network Programs
Stefan Tilkov • innoQ
Steve Vinoski • Verivue



NOVEMBER/DECEMBER 2010 81

Node.js: Using JavaScript

the select() and poll() Unix sys-
tem calls, the Linux epoll service, 
and the kqueue and kevent calls 
available in BSD Unix variants such 
as OS X. Applications register interest 
in certain events, such as data being 
ready to read on a particular socket. 
When the event occurs, the notifica-
tion system notifies the application so 
that it can handle the event.

Asynchronous I/O is  important for 
event-driven programming because 
it prevents the application from get-
ting blocked while waiting in an I/O 
operation. For example, if the appli-
cation writes to a socket and fills the 
socket’s underlying buffer, ordinar-
ily, the socket blocks the application’s 
writes until buffer space becomes 
available, thus preventing the appli-
cation from doing any other useful 
work. But, if the socket is nonblock-
ing, it instead returns an indication 
to the application that further writ-
ing isn’t currently possible, thereby 
informing the application that it 
should try again later. Assuming the 
application has registered interest 
with the event notification system in 
that socket, it can go do something 
else, knowing that it will receive an 
event when the socket’s write buffer 
has available space.

Like multithreaded program-
ming, event-driven programming 
with asynchronous I/O can be 
 problematic. One problem is that 
not all interprocess- communication 
 ap proaches can be tied into the event 
notification facilities we mentioned 
earlier. For example, on most OSs, 
for two applications to communicate 
through shared memory, shared-
memory segments provide no han-
dles or file descriptors enabling the 
application to register for events. For 
such cases, developers must resort 
to alternatives such as writing to 
a pipe or some other event-capable 
mechanism together with writing to 
shared memory.

Another significant problem is 
the sheer complexity of writing 

applications in certain programming 
languages to deal with events and 
asynchronous I/O. This is because 
different events require different 
actions in different contexts. Pro-
grams typically employ callback 
functions to deal with events. In 
languages that lack anonymous 
functions and closures, such as C, 
developers must write individual 
functions specifically for each event 
and event context. Ensuring that 
these functions all have access to 
the data and context information 
they require when they’re called to 
handle an event can be incredibly 
perplexing. Many such applications 
end up being little more than impen-
etrable, unmaintainable tangles of 
spaghetti code and global variables.

Not Your Father’s JavaScript
Whatever you might think about 
JavaScript as a programming lan-
guage, there’s little to no doubt it 
has become a central element of 
any modern HTML-based applica-
tion. Server-side JavaScript is a logi-
cal next step, enabling the use of a 
single programming language for all 
aspects of a Web-based distributed 
application. This idea isn’t new — for 
example, the Rhino JavaScript exe-
cution environment has been avail-
able for a long time. Still, server-side 
JavaScript isn’t yet a mainstream 
approach and has only recently 
gained massive popularity.

We believe that a number of 
factors have led to this effect. The 
advent of the set of technologies col-
lectively labeled “HTML 5” reduces 
the appeal of alternative client-side 
platforms, enforcing the need to get 
to know and exploit JavaScript to 
create rich user interfaces. NoSQL-
type databases such as CouchDB 
and Riak use JavaScript to define 
data views and filter criteria. Other 
dynamic languages, such as Ruby 
and Python, have become acceptable 
choices for server-side development. 
Finally, both Mozilla and Google 

have released high-performance 
JavaScript runtime implementations 
that are extremely fast and scalable.

The Node  
Programming Model
Node’s I/O approach is strict: asyn-
chronous interactions aren’t the 
exception; they’re the rule. Every 
I/O operation is handled by means 
of higher-order functions — that 
is, functions taking functions as 
a parameter — that specify what to 
do when there’s something to do. In 
only rare circumstances have Node’s 
developers added a convenience func-
tion that works synchronously — for 
example, for removing or renaming 
files. But, generally, when opera-
tions that might require network or 
file I/O are invoked, control is imme-
diately returned to the caller. When 
something interesting happens — for 
example, if data becomes available 
for reading from a network socket, 
an output stream is ready for writing, 
or an error occurs — the appropriate 
callback function is called.

Figure 1 is a simple example of 
implementing an HTTP Web server 
that serves static files from disk. 
Even to non-Web developers, Java-
Script’s syntax should be fairly obvi-
ous for those with prior exposure to 
any C-like language. One of the more 
specific topics is the function(...) 
syntax. This creates an unnamed 
function: JavaScript is a functional 
language and, as such, supports 
higher-order functions. A developer 
writing or looking at a Node program 
will see these everywhere.

The program’s main flow is deter-
mined by the functions that are 
explicitly called. These functions 
never block on anything I/O-related, 
but rather register appropriate han-
dler callbacks. If you’ve seen a simi-
lar concept in eventing libraries for 
other programming languages, you 
might wonder where the explicit 
blocking call to invoke the event loop 
hides. The event loop concept is so 



The Functional Web

82   www.computer.org/internet/ IEEE INTERNET COMPUTING

core to Node’s behavior that it’s hid-
den in the implementation; the main 
program’s purpose is simply to set 
up appropriate handlers. The http.
createServer function, which is a 
wrapper around a low-level efficient 
HTTP protocol implementation, is 
passed a function as the only argu-
ment. This function is invoked when-
ever data for a new request is ready 
to be read. In another environment, 
a naïve implementation might ruin 
the effect of eventing by synchro-
nously reading a file and sending it 
back. Node offers no opportunity to 
read a file synchronously — the only 
option is to register another func-
tion via readFile that gets invoked 
whenever data can be read.

Concurrent Programming
A node server process, usu-
ally invoked from the command 
line using something like “node 
<scriptname>,” runs single-

threaded, yet can serve many clients 
concurrently. This seems a contra-
diction, but recall that there’s an 
implicit main loop around the code, 
and what’s actually happening in 
that loop is just a number of regis-
tration calls. No actual I/O, let alone 
business-logic processing, happens 
in the loop body. I/O-related events 
trigger the actual processing, such 
as a connection being made or bytes 
being sent or received from a socket, 
file, or external system.

Figure 2 is a slightly more com-
plex variant of the simplistic HTTP 
server, but it does a lot more. Again, 
it parses the URI from an HTTP 
request and maps the URI’s path 
component to a filename on the 
server. But this time, the file is read 
in smaller chunks rather than all at 
once. In certain situations, the func-
tion provided for the scenario as a 
callback is invoked. Example situ-
ations include when the file system 

layer is ready to hand a number of 
bytes to the application, when the 
file has been read completely, or 
when some kind of error occurs. If 
data is available, it’s written to the 
HTTP output stream. Node’s sophis-
ticated HTTP library supports HTTP 
1.1’s chunked transfer encoding. 
Again, both reading from the file 
and writing to the HTTP stream hap-
pen asynchronously.

The example in Figure 2 shows 
how easily developers can build a 
high-performance, asynchronous, 
event-driven network server with 
modest resource requirements. The 
main reason is that JavaScript, owing 
to its functional nature, supports 
event callbacks. In fact, this pattern 
is well known to any client-side Java-
Script developer. In addition, making 
asynchronous I/O the default forces 
developers to adopt the asynchro-
nous model from the start. This is 
one of the main differences between 
Node and using asynchronous I/O in 
other programming environments, in 
which it’s only one of many options 
and is often considered too advanced.

Running Multiple Processes
In hardware environments in which 
more than one physical CPU or core 
is available, parallel execution isn’t 
an illusion but a reality. Although 
the OS can efficiently schedule a 
Node process with its asynchronous 
I/O interactions in parallel with 
other processes running on the sys-
tem, Node still runs in a single pro-
cess and thus never executes its core 
business logic in parallel. The com-
mon solution to this problem in the 
Node world is to run multiple pro-
cess instances.

To support this, the multi-node 
library (see http://github.com/kris 
zyp/multi-node) leverages the OS’s 
capability of sharing sockets 
between processes (and is imple-
mented in fewer than 200 lines of 
Node Java Script). For example, 
you can run HTTP servers such as 

var sys = require(“sys”),
    http = require(“http”),
    url = require(“url”),
    path = require(“path”),
    fs = require(“fs”);

http.createServer(function(request, response) {
    var uri = url.parse(request.url).pathname;
    var filename = path.join(process.cwd(), uri);
    path.exists(filename, function(exists) {
        if(exists) {
            fs.readFile(filename, function(err, data) {
                response.writeHead(200);
                response.end(data);
            });
        } else {
            response.writeHead(404);
            response.end();
        }
    });
}).listen(8080);
sys.log(“Server running at http://localhost:8080/”);

Figure 1. A simple HTTP file server. Events trigger anonymous functions that 
execute input or output operations. Incoming requests trigger the server to 
parse the target URI, look for a local file matching the URI path, and, if found, 
read the file contents and write them along with appropriate HTTP headers 
as a response to the client.



NOVEMBER/DECEMBER 2010 83

Node.js: Using JavaScript

those in Figures 1 and 2 in paral-
lel by invoking multi-node’s lis-
ten() function. This starts multiple 
processes that all listen on the same 
port, effectively using the OS as an 
efficient load balancer.

A Server-Side  
JavaScript Ecosystem
Node is one of the better-known 
frameworks and environments that 
support server-side Java Script devel-
opment. The community has created 
a whole ecosystem of libraries for, or 
compatible with, Node. Among these, 
tools such as node-mysql or node-
couchdb play an important role by 
supporting asynchronous interaction 
with relational and NoSQL data stores, 
respectively. Many frameworks pro-
vide a full-featured Web stack, such 
as Connect and Express, which are 
comparable to Rack and Rails in the 
Ruby world in scope, if not (yet?) in 
popularity. The Node package man-
ager, npm, enables installation of 
libraries and their dependencies. 
Finally, many libraries available for 
client-side JavaScript that were writ-
ten to comply with the CommonJS 
module system also work with Node. 
An impressive list of modules avail-
able for Node is at http://github.com/
ry/node/wiki/modules.

G iven that, in most Web develop-
ment projects, JavaScript knowl-

edge is a prerequisite for advanced 
UI interactions, the option of using 
one programming language for 
everything becomes quite tempt-
ing. Node.js’s architecture makes 
it easy to use a highly expressive, 
functional language for server pro-
gramming, without sacrificing per-
formance and stepping out of the 
programming mainstream. 

Stefan Tilkov is cofounder of innoQ, a tech-

nology consultancy with offices in Ger-

many and Switzerland. He blogs at www.

innoq.com/blog/st and is addicted to a 

certain social network where he’s identi-

fied as @stilkov.

Steve Vinoski is a member of the technical 

staff at Verivue. He’s a senior member 

of the IEEE and a member of the ACM. 

You can read Vinoski’s blog at http://

steve.vinoski.net/blog and contact him at 

 vinoski@ieee.org.

Selected CS articles and columns 
are also available for free at http:// 

ComputingNow.computer.org.

var sys = require(“sys”),
    http = require(“http”),
    url = require(“url”),
    path = require(“path”),
    fs = require(“fs”);

http.createServer(function(request, response) {
    var uri = url.parse(request.url).pathname;
    var filename = path.join(process.cwd(), uri);
    path.exists(filename, function(exists) {
        if(exists) {
            f = fs.createReadStream(filename);
            f.addListener(‘open’, function() {
                response.writeHead(200);
            });
            f.addListener(‘data’, function(chunk) {
                response.write(chunk);
                setTimeout(function() {
                    f.resume()
                }, 100);
            });
            f.addListener(‘error’, function(err) {
                response.writeHead(500, {“Content-Type”:
                                         “text/plain”});
                response.write(err + “\n”);
                response.end();
            });
            f.addListener(‘close’, function() {
                response.end();
            });
        } else {
            response.writeHead(404);
            response.end();
        }
    });
}).listen(8080);
sys.log(“Server running at http://localhost:8080/”);

Figure 2. A simple streaming HTTP file server. Chunks of the file are read 
from disk and sent to the client using HTTP’s “chunked” transfer encoding. 

Our experts. 
Your future.

www.computer.org/byc


