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W riting server-side Web applications and 
Web servers in Erlang is pretty straight-
forward. The Web protocol is, of course, 

HTTP over TCP, for which Erlang provides com-
prehensive built-in support. Web server applica-
tions are naturally concurrent owing to the need 
to simultaneously handle requests from multiple 
clients, and Erlang provides applications with 
remarkably painless concurrency support. Such 
applications also need access to back-end data 
stores and networked services, and Erlang sup-
plies them with multiple database choices and 
flexible support for integrating with non-Erlang 
service applications. In addition, various Erlang 
Web servers, libraries, and frameworks provide 
applications with template languages and sup-
port for common representation formats such as 
HTML, XML, and JavaScript Object Notation (JSON).

As with any programming language and 
runtime system, Erlang has constructs and 
approaches that, if applied incorrectly, can 
negatively affect application performance and 
scalability. Developers typically find poorly per-
forming applications frustrating and discourag-
ing, especially if they’re new to the language. 
Being aware of a language’s performance traps 
and how to avoid them is key for newcomers 
investigating different languages in the hopes 
of finding advantages not only in performance, 
but also for ease of development and mainte-
nance, flexibility, and time to market.

When compared to the concurrency con-
structs used in most other languages, Erlang 
processes are simple yet powerful. Even so, 
new Erlang developers often misuse them and 
fail to understand how and where underlying 
frameworks and libraries use processes. In the 
context of Erlang Web servers and Web applica-
tions, failing to properly manage processes and  

communication between them can result in sys-
tems that perform and scale poorly.

Anatomy of an Erlang Web Server
Because structural awareness of a typical Erlang 
Web server is important for understanding how 
to properly use Erlang processes, let’s begin by 
writing parts of a simple Web server. If you’re 
familiar with regular socket programming, 
you’ll likely recognize my approach’s organiza-
tion, even if you’re not familiar with Erlang. 

First, you need a simple function to listen for 
incoming connections (see Figure 1). This code 
listens for connections on port 8000 and invokes 
the loop/1 function, passing the listen socket. 
(Erlang functions are identified using the form 
“name/arity,” where arity refers to the number 
of function arguments.)

The loop/1 function in Figure 2 is also 
straightforward. This function creates a new 
process that executes the acceptor/2 function 
to accept incoming client connections, and then 
waits for the newly spawned process to notify 
it when a new client has arrived. It passes the 
listen socket and its own process identifier 
(retrieved via the self() function) so that the 
acceptor process knows whom to notify when  
it accepts a new connection. After receiving the 
accepted message, loop/1 calls itself recur-
sively to create a new acceptor process.

Figure 3 shows the acceptor function. It 
accepts an incoming client connection, rep-
resented by a socket Sock. Then, it sends the 
loop/1 process the accepted message so that it 
knows to create a new acceptor. It then proceeds 
to handle the request. I’ll cover the handle_
request/1 function implementation later.

Although I haven’t shown anything yet 
that’s specific to Web servers — the listening and 
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accepting loop could serve any TCP-
based protocol — what’s important is 
that this design uses a process-per-
connection approach. This approach, 
typical of Erlang Web servers, means 
that the system handles every new 
connection within a separate Erlang 
process. Taking such an approach 
with operating system threads would 
be a disaster owing to their high cost, 
but Erlang processes are extremely 
lightweight and are both inexpen-
sive and fast to create. An Erlang 
runtime system can easily support 
hundreds of thousands of concurrent 
processes within a single operating 
system process. This makes it not 
only easy but practical for our simple 
Web server to spawn a new process 
every time it gets a new connection, 
let the new process handle that con-
nection, and then let the process die 
when the connection closes.

Managing State
If the server-side application running 
under the simple Web server uses 
databases or back-end services to help 
fulfill requests, you need a way to 
hold onto the database connection or 
the network connection to the back-
end service. Because Erlang doesn’t 
support global or per-module vari-
ables, you can store the state required 
to hold such connections in a process.

The Erlang open source distri-
bution (available from www.erlang.
org) includes a set of libraries and 
frameworks called the Open Telecom 
Platform (OTP), so named because it 
was initially created to support the 
development of telecommunications 
systems such as telephone switches. 
OTP — which, despite its name, 
turned out to be useful for all types 
of applications — provides state-
holding extensible process frame-
works called behaviors. Applications 
extend OTP behaviors by imple-
menting specific callback functions 
that help handle messages sent to the 
behavior process. For example, the 
gen_server behavior supplies basic 

support, letting applications write 
server processes, and the gen_fsm 
behavior lets applications easily 
implement finite-state machines.

Fundamentally, OTP behaviors 
operate as processes executing tail-
recursive functions that receive and 
act on messages. These functions 
also store state in a variable that each 
function passes to its next recursive 
invocation. A behavior’s workflow 
generally proceeds in a manner sim-
ilar to that shown in Figure 4.

The behavior_loop function takes 
a single argument: the state carried 
by the process running the loop. 
The function first receives a mes-
sage and passes that message along 
with the current state to the app_ 
callback function, which the appli-
cation using the behavior supplies. 
The callback function processes 
the message and returns a 2-tuple  

consisting of a loop directive and 
new state. The loop directive tells the 
loop what to do next: if it’s the atom 
stop, the loop stops; otherwise, the 
loop calls itself recursively, passing 
the new state. The recursion keeps the 
process from ending until it’s explic-
itly stopped.

Actual OTP behaviors such as 
gen_server and gen_fsm are more 
sophisticated than this because they 
support multiple application call-
back functions and multiple loop 
directives, provide debugging facili-
ties, and help handle live runtime 
code updates. Even so, a behavior 
is essentially a process maintain-
ing state via tail-recursive function 
calls and receiving messages that 
inform the application’s callbacks of 
what actions to perform next, act-
ing on the state as they carry out the 
desired action.

start() ->
  ListenOptions = [binary, {reuseaddr, true}],
  {ok, LS} = gen_tcp:listen(8000, ListenOptions),
  loop(LS).

Figure 1. A simple listening function. This function sets up a listen socket for 
connections on port 8000. Once the socket is set up, this function passes it to 
a loop that accepts incoming client connections on that port.

loop(LS) ->
  spawn(?MODULE, acceptor, [LS, self()]),
  receive
    accepted -> loop(LS)
  end.

Figure 2. The loop/1 function. This tail-recursive function spawns a new 
process to accept incoming connections, and then waits for that process to 
send it a message indicating it’s accepted a connection. Once it receives that 
message, it calls itself recursively to create a new acceptor.

acceptor(LS, Parent) ->
  {ok, Sock} = gen_tcp:accept(LS),
  Parent ! accepted,
  handle_request(Sock).

Figure 3. The acceptor function. This function accepts a new connection, tells 
its parent process (running the loop/1 function) that it’s accepted a new 
connection, and then proceeds to handle the request.
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Request Serialization
A developer following normal Erlang 
best practices would naturally 
employ a gen_server or gen_fsm to 
hold a connection to a database or 
back-end server in the loop state. 
Messages or calls into the gen_
server or gen_fsm would direct it 
to send requests over its connection 
to store or retrieve information to 
or from the database or service at 
the other end. Unfortunately, this 
approach won’t work well in the con-
text of this simple Web server.

Recall that this simple Web 
server creates a new Erlang process 
for each new connection. Let’s say 
the Web server application uses a 
gen_server to hold a connection to 
a back-end networked service. The 
application handles incoming HTTP 
requests by sending requests to the 

service to retrieve information that it 
then uses to create HTTP responses. 
As I detailed earlier, the Web server 
initially handles each HTTP request 
in a separate acceptor process that 
calls handle_request/1. You might 
implement a handle_request/1 
function like the one in Figure 5.

The handle_request/1 function 
reads the request from the socket 
and passes it to a call to the back-
end service proxy, registered in the 
local Erlang process registry under 
the name proxy, which is the gen_
server that holds the service con-
nection. The actual back-end service 
returns response data to the gen_
server, which in turn processes that 
data to return a response to handle_
request/1. The handle_request/1 
function uses the response to reply 
to the HTTP client. The invocation 

of the gen_server:call function is 
special in that it exchanges messages 
with the gen_server process, rather 
than being just a simple function 
call. It first sends a message into the 
state-holding gen_server process to 
ask it to carry out a request to the 
back-end service. Then, the gen_
server:call waits in a receive 
for a default of five seconds in the 
caller’s process for the gen_server 
to send back a response message. In 
other words, the gen_server:call 
here involves two processes: the 
caller’s process and the called proxy 
process (the gen_server).

Now, consider what happens if 
1,000 Web clients connect at about 
the same time, each issuing a GET 
request. The Web server creates a 
new acceptor process for each Web 
client connection, 1,000 in all. Each 
acceptor calls the handle_request/1 
function, which reads the incom-
ing request from the socket, forms 
a request message, and invokes 
the gen_server:call to send the 
request message to the proxy pro-
cess. In Erlang, each process has a 
queue in which it receives messages 
sent by other processes; the 1,000 
acceptor processes thus put a total of 
1,000 messages into the proxy process 
message queue. The proxy process 
then proceeds to drain its queue by 
receiving request messages one by 
one in its behavior loop. It invokes 
an application callback for each one 
to handle the request. The callback 
calls over to the actual back-end 
service, gets a reply, and then sends 
the reply back to the calling accep-
tor process for return to the Web cli-
ent. Figure 6 illustrates the acceptor 
processes and the proxy process.

The problem is that this design pro-
vides the opposite of a shared-nothing  
architecture: the proxy process mes-
sage queue effectively serializes all 
HTTP requests. The first few of the 
1,000 requests might get processed 
relatively quickly, but the deeper in 
the proxy message queue a request 

behavior_loop(State) ->
  receive
    Message ->
      {Next, NewState} = app_callback(Message, State),
      case Next of
        stop ->
          ok;
        _Else ->
          behavior_loop(NewState)
      end
  end.

Figure 4. A behavior’s conceptual workflow. A behavior’s core is a tail-recursive 
function loop that passes state to each recursion. The loop’s body receives 
messages and invokes application callback functions to act on them. The 
application callbacks return new state for the next recursion as well as 
directives to tell the loop what to do next. Actual OTP behaviors are noticeably 
more sophisticated than this simple example.

handle_request(Sock) ->
    Request = read_request(Sock),
    Response = gen_server:call(proxy, Request),
    return_response(Sock, Response).

Figure 5. The application’s request handling function. After reading the request 
from the socket, the function calls a gen_server process that in turn invokes 
a back-end service to fulfill the request. The gen_server keeps the network 
connection to the back-end service in its state. This function uses the gen_
server’s response to reply to the HTTP client.
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is, the longer it takes to be handled. 
As the number of concurrent client 
requests increases, not only does 
latency rise owing to increased proxy 
message queue length, but queues 
can grow without bound because 
Erlang process queues offer no back 
pressure to sender processes. A fast 
sender not only overruns a receiver, 
it can even place enough messages 
in the receiver’s queue to use up 
all available memory and crash the 
entire Erlang runtime system.

Better Approaches
This solution’s significant shortcom-
ings become obvious if you measure 
throughput and latency of the appli-
cation under varying client loads. 
They’re also obvious if you’re not an 
Erlang beginner and you understand 
the internals of your Erlang Web 
server and OTP behavior internals. 
But, if you’re a newcomer to Erlang 
and you measure the system, there’s 
a good chance your inexperience 
with the language might lead you to 
incorrectly conclude that the prob-
lems are inherent in Erlang and are 
thus unavoidable.

A variety of better approaches 
exist, but not surprisingly, they all 
involve reducing or eliminating con-
tention for resources. Which one is 
best depends on your particular sys-
tem’s characteristics. For example, 
creating a pool of proxy instances 
would let the acceptor processes ran-
domly load-balance requests across 
the pool. Another option that would 
work with either a single proxy 
instance or a pool is to maintain a 
local cache of proxy results, thereby 
allowing many requests to com-
pletely bypass access to the back-end 
service or database. Cached results 
could be stored in an Erlang ets  
(Erlang term storage) table, which 
is an in-memory store that multiple 
Erlang processes can read and write 
concurrently.

The ideal approach is to fully 
process each HTTP request and 

response completely in the Web 
server process that accepted the 
connection. If you can’t obtain this 
ideal for your application, it might 
be possible to decompose the logic 
in a proxy instance into smaller 
shared state-holding processes, each 
responsible for part of the work. This 
approach spreads the load of all the 
Web server processes among these 
finer-grained resource managers, 
breaking up the original proxy’s 
single coarse-grained point of con-
tention. This not only reduces over-
all contention but also lets each Web 
server process use only the exact 
shared resources required to fulfill 
a particular request. It also makes 
the thread of control clear: the Web 
server process is in command, call-
ing into other processes only as nec-
essary. Developers must carefully 
write the shared state-holding pro-
cesses such that they never block 
because they must multiplex numer-
ous concurrent requests, but no such 
limitation exists for the Web server 
process. The clear thread of con-
trol means the overall application 
is easier to develop and debug. The 
shared-nothing approach underlying 
this ideal goal and these alternatives 
is, of course, not specific to Erlang.

A s I mentioned earlier, experienced 
Erlang developers are well aware 

of potential process bottlenecks such 
as this one, but I’ve seen this prob-
lem trip up a number of developers 
new to Erlang. Perhaps the relative 
simplicity of Erlang concurrency 
capabilities along with its fast inter-
process communication facilities 
lulls newcomers into a false sense 
of performance and scalability secu-
rity when it comes to working with 
multiple processes. Not knowing the 
inner workings of OTP behaviors 
certainly contributes, and another 
potential point of confusion might 
be due to erroneously equating mod-
ules with processes when designing  

application logic. But, as always, 
there’s no magic; making the most 
of concurrency in server-side Web 
applications means understanding 
all potential points of resource con-
tention and working to either reduce 
their effects or, better yet, eliminate 
them entirely. 
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Figure 6. The acceptor processes 
can overrun the proxy process, 
depending on the number of 
concurrent Web clients. When 
processing a client connection, an 
acceptor sends a message to the 
proxy process message queue; for 
each message, the proxy uses its 
connection to communicate with the 
back-end service. The connection to 
the back-end service is held in the 
proxy process state. The fact that all 
acceptors share the proxy resource 
results in contention, high latency, and 
possible message queue growth that 
can lead to out-of-memory conditions.
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