
The Functional Web

86 Published by the IEEE Computer Society 1089-7801/11/$26.00 © 2011 IEEE IEEE INTERNET COMPUTING

W riting server-side Web applications and
Web servers in Erlang is pretty straight-
forward. The Web protocol is, of course,

HTTP over TCP, for which Erlang provides com-
prehensive built-in support. Web server applica-
tions are naturally concurrent owing to the need
to simultaneously handle requests from multiple
clients, and Erlang provides applications with
remarkably painless concurrency support. Such
applications also need access to back-end data
stores and networked services, and Erlang sup-
plies them with multiple database choices and
flexible support for integrating with non-Erlang
service applications. In addition, various Erlang
Web servers, libraries, and frameworks provide
applications with template languages and sup-
port for common representation formats such as
HTML, XML, and JavaScript Object Notation (JSON).

As with any programming language and
runtime system, Erlang has constructs and
approaches that, if applied incorrectly, can
negatively affect application performance and
scalability. Developers typically find poorly per-
forming applications frustrating and discourag-
ing, especially if they’re new to the language.
Being aware of a language’s performance traps
and how to avoid them is key for newcomers
investigating different languages in the hopes
of finding advantages not only in performance,
but also for ease of development and mainte-
nance, flexibility, and time to market.

When compared to the concurrency con-
structs used in most other languages, Erlang
processes are simple yet powerful. Even so,
new Erlang developers often misuse them and
fail to understand how and where underlying
frameworks and libraries use processes. In the
context of Erlang Web servers and Web applica-
tions, failing to properly manage processes and

communication between them can result in sys-
tems that perform and scale poorly.

Anatomy of an Erlang Web Server
Because structural awareness of a typical Erlang
Web server is important for understanding how
to properly use Erlang processes, let’s begin by
writing parts of a simple Web server. If you’re
familiar with regular socket programming,
you’ll likely recognize my approach’s organiza-
tion, even if you’re not familiar with Erlang.

First, you need a simple function to listen for
incoming connections (see Figure 1). This code
listens for connections on port 8000 and invokes
the loop/1 function, passing the listen socket.
(Erlang functions are identified using the form
“name/arity,” where arity refers to the number
of function arguments.)

The loop/1 function in Figure 2 is also
straightforward. This function creates a new
process that executes the acceptor/2 function
to accept incoming client connections, and then
waits for the newly spawned process to notify
it when a new client has arrived. It passes the
listen socket and its own process identifier
(retrieved via the self() function) so that the
acceptor process knows whom to notify when
it accepts a new connection. After receiving the
accepted message, loop/1 calls itself recur-
sively to create a new acceptor process.

Figure 3 shows the acceptor function. It
accepts an incoming client connection, rep-
resented by a socket Sock. Then, it sends the
loop/1 process the accepted message so that it
knows to create a new acceptor. It then proceeds
to handle the request. I’ll cover the handle_
request/1 function implementation later.

Although I haven’t shown anything yet
that’s specific to Web servers — the listening and

Process Bottlenecks within
Erlang Web Applications
Steve Vinoski • Verivue

IC-15-02-fun.fin.indd 86 2/21/11 12:33 PM

Process Bottlenecks within Erlang Web Applications

MARCH/APRIL 2011 87

accepting loop could serve any TCP-
based protocol — what’s important is
that this design uses a process-per-
connection approach. This approach,
typical of Erlang Web servers, means
that the system handles every new
connection within a separate Erlang
process. Taking such an approach
with operating system threads would
be a disaster owing to their high cost,
but Erlang processes are extremely
lightweight and are both inexpen-
sive and fast to create. An Erlang
runtime system can easily support
hundreds of thousands of concurrent
processes within a single operating
system process. This makes it not
only easy but practical for our simple
Web server to spawn a new process
every time it gets a new connection,
let the new process handle that con-
nection, and then let the process die
when the connection closes.

Managing State
If the server-side application running
under the simple Web server uses
databases or back-end services to help
fulfill requests, you need a way to
hold onto the database connection or
the network connection to the back-
end service. Because Erlang doesn’t
support global or per-module vari-
ables, you can store the state required
to hold such connections in a process.

The Erlang open source distri-
bution (available from www.erlang.
org) includes a set of libraries and
frameworks called the Open Telecom
Platform (OTP), so named because it
was initially created to support the
development of telecommunications
systems such as telephone switches.
OTP — which, despite its name,
turned out to be useful for all types
of applications — provides state-
holding extensible process frame-
works called behaviors. Applications
extend OTP behaviors by imple-
menting specific callback functions
that help handle messages sent to the
behavior process. For example, the
gen_server behavior supplies basic

support, letting applications write
server processes, and the gen_fsm
behavior lets applications easily
implement finite-state machines.

Fundamentally, OTP behaviors
operate as processes executing tail-
recursive functions that receive and
act on messages. These functions
also store state in a variable that each
function passes to its next recursive
invocation. A behavior’s workflow
generally proceeds in a manner sim-
ilar to that shown in Figure 4.

The behavior_loop function takes
a single argument: the state carried
by the process running the loop.
The function first receives a mes-
sage and passes that message along
with the current state to the app_
callback function, which the appli-
cation using the behavior supplies.
The callback function processes
the message and returns a 2-tuple

consisting of a loop directive and
new state. The loop directive tells the
loop what to do next: if it’s the atom
stop, the loop stops; otherwise, the
loop calls itself recursively, passing
the new state. The recursion keeps the
process from ending until it’s explic-
itly stopped.

Actual OTP behaviors such as
gen_server and gen_fsm are more
sophisticated than this because they
support multiple application call-
back functions and multiple loop
directives, provide debugging facili-
ties, and help handle live runtime
code updates. Even so, a behavior
is essentially a process maintain-
ing state via tail-recursive function
calls and receiving messages that
inform the application’s callbacks of
what actions to perform next, act-
ing on the state as they carry out the
desired action.

start() ->
 ListenOptions = [binary, {reuseaddr, true}],
 {ok, LS} = gen_tcp:listen(8000, ListenOptions),
 loop(LS).

Figure 1. A simple listening function. This function sets up a listen socket for
connections on port 8000. Once the socket is set up, this function passes it to
a loop that accepts incoming client connections on that port.

loop(LS) ->
 spawn(?MODULE, acceptor, [LS, self()]),
 receive
 accepted -> loop(LS)
 end.

Figure 2. The loop/1 function. This tail-recursive function spawns a new
process to accept incoming connections, and then waits for that process to
send it a message indicating it’s accepted a connection. Once it receives that
message, it calls itself recursively to create a new acceptor.

acceptor(LS, Parent) ->
 {ok, Sock} = gen_tcp:accept(LS),
 Parent ! accepted,
 handle_request(Sock).

Figure 3. The acceptor function. This function accepts a new connection, tells
its parent process (running the loop/1 function) that it’s accepted a new
connection, and then proceeds to handle the request.

IC-15-02-fun.fin.indd 87 2/21/11 12:33 PM

The Functional Web

88 www.computer.org/internet/ IEEE INTERNET COMPUTING

Request Serialization
A developer following normal Erlang
best practices would naturally
employ a gen_server or gen_fsm to
hold a connection to a database or
back-end server in the loop state.
Messages or calls into the gen_
server or gen_fsm would direct it
to send requests over its connection
to store or retrieve information to
or from the database or service at
the other end. Unfortunately, this
approach won’t work well in the con-
text of this simple Web server.

Recall that this simple Web
server creates a new Erlang process
for each new connection. Let’s say
the Web server application uses a
gen_server to hold a connection to
a back-end networked service. The
application handles incoming HTTP
requests by sending requests to the

service to retrieve information that it
then uses to create HTTP responses.
As I detailed earlier, the Web server
initially handles each HTTP request
in a separate acceptor process that
calls handle_request/1. You might
implement a handle_request/1
function like the one in Figure 5.

The handle_request/1 function
reads the request from the socket
and passes it to a call to the back-
end service proxy, registered in the
local Erlang process registry under
the name proxy, which is the gen_
server that holds the service con-
nection. The actual back-end service
returns response data to the gen_
server, which in turn processes that
data to return a response to handle_
request/1. The handle_request/1
function uses the response to reply
to the HTTP client. The invocation

of the gen_server:call function is
special in that it exchanges messages
with the gen_server process, rather
than being just a simple function
call. It first sends a message into the
state-holding gen_server process to
ask it to carry out a request to the
back-end service. Then, the gen_
server:call waits in a receive
for a default of five seconds in the
caller’s process for the gen_server
to send back a response message. In
other words, the gen_server:call
here involves two processes: the
caller’s process and the called proxy
process (the gen_server).

Now, consider what happens if
1,000 Web clients connect at about
the same time, each issuing a GET
request. The Web server creates a
new acceptor process for each Web
client connection, 1,000 in all. Each
acceptor calls the handle_request/1
function, which reads the incom-
ing request from the socket, forms
a request message, and invokes
the gen_server:call to send the
request message to the proxy pro-
cess. In Erlang, each process has a
queue in which it receives messages
sent by other processes; the 1,000
acceptor processes thus put a total of
1,000 messages into the proxy process
message queue. The proxy process
then proceeds to drain its queue by
receiving request messages one by
one in its behavior loop. It invokes
an application callback for each one
to handle the request. The callback
calls over to the actual back-end
service, gets a reply, and then sends
the reply back to the calling accep-
tor process for return to the Web cli-
ent. Figure 6 illustrates the acceptor
processes and the proxy process.

The problem is that this design pro-
vides the opposite of a shared-nothing
architecture: the proxy process mes-
sage queue effectively serializes all
HTTP requests. The first few of the
1,000 requests might get processed
relatively quickly, but the deeper in
the proxy message queue a request

behavior_loop(State) ->
 receive
 Message ->
 {Next, NewState} = app_callback(Message, State),
 case Next of
 stop ->
 ok;
 _Else ->
 behavior_loop(NewState)
 end
 end.

Figure 4. A behavior’s conceptual workflow. A behavior’s core is a tail-recursive
function loop that passes state to each recursion. The loop’s body receives
messages and invokes application callback functions to act on them. The
application callbacks return new state for the next recursion as well as
directives to tell the loop what to do next. Actual OTP behaviors are noticeably
more sophisticated than this simple example.

handle_request(Sock) ->
 Request = read_request(Sock),
 Response = gen_server:call(proxy, Request),
 return_response(Sock, Response).

Figure 5. The application’s request handling function. After reading the request
from the socket, the function calls a gen_server process that in turn invokes
a back-end service to fulfill the request. The gen_server keeps the network
connection to the back-end service in its state. This function uses the gen_
server’s response to reply to the HTTP client.

IC-15-02-fun.fin.indd 88 2/21/11 12:33 PM

Process Bottlenecks within Erlang Web Applications

MARCH/APRIL 2011 89

is, the longer it takes to be handled.
As the number of concurrent client
requests increases, not only does
latency rise owing to increased proxy
message queue length, but queues
can grow without bound because
Erlang process queues offer no back
pressure to sender processes. A fast
sender not only overruns a receiver,
it can even place enough messages
in the receiver’s queue to use up
all available memory and crash the
entire Erlang runtime system.

Better Approaches
This solution’s significant shortcom-
ings become obvious if you measure
throughput and latency of the appli-
cation under varying client loads.
They’re also obvious if you’re not an
Erlang beginner and you understand
the internals of your Erlang Web
server and OTP behavior internals.
But, if you’re a newcomer to Erlang
and you measure the system, there’s
a good chance your inexperience
with the language might lead you to
incorrectly conclude that the prob-
lems are inherent in Erlang and are
thus unavoidable.

A variety of better approaches
exist, but not surprisingly, they all
involve reducing or eliminating con-
tention for resources. Which one is
best depends on your particular sys-
tem’s characteristics. For example,
creating a pool of proxy instances
would let the acceptor processes ran-
domly load-balance requests across
the pool. Another option that would
work with either a single proxy
instance or a pool is to maintain a
local cache of proxy results, thereby
allowing many requests to com-
pletely bypass access to the back-end
service or database. Cached results
could be stored in an Erlang ets
(Erlang term storage) table, which
is an in-memory store that multiple
Erlang processes can read and write
concurrently.

The ideal approach is to fully
process each HTTP request and

response completely in the Web
server process that accepted the
connection. If you can’t obtain this
ideal for your application, it might
be possible to decompose the logic
in a proxy instance into smaller
shared state-holding processes, each
responsible for part of the work. This
approach spreads the load of all the
Web server processes among these
finer-grained resource managers,
breaking up the original proxy’s
single coarse-grained point of con-
tention. This not only reduces over-
all contention but also lets each Web
server process use only the exact
shared resources required to fulfill
a particular request. It also makes
the thread of control clear: the Web
server process is in command, call-
ing into other processes only as nec-
essary. Developers must carefully
write the shared state-holding pro-
cesses such that they never block
because they must multiplex numer-
ous concurrent requests, but no such
limitation exists for the Web server
process. The clear thread of con-
trol means the overall application
is easier to develop and debug. The
shared-nothing approach underlying
this ideal goal and these alternatives
is, of course, not specific to Erlang.

A s I mentioned earlier, experienced
Erlang developers are well aware

of potential process bottlenecks such
as this one, but I’ve seen this prob-
lem trip up a number of developers
new to Erlang. Perhaps the relative
simplicity of Erlang concurrency
capabilities along with its fast inter-
process communication facilities
lulls newcomers into a false sense
of performance and scalability secu-
rity when it comes to working with
multiple processes. Not knowing the
inner workings of OTP behaviors
certainly contributes, and another
potential point of confusion might
be due to erroneously equating mod-
ules with processes when designing

application logic. But, as always,
there’s no magic; making the most
of concurrency in server-side Web
applications means understanding
all potential points of resource con-
tention and working to either reduce
their effects or, better yet, eliminate
them entirely.

Acknowledgments
Thanks to Ulf Wiger of Erlang Solutions for

his helpful review comments on a draft of

this column.

Steve Vinoski is a member of Verivue’s tech-

nical staff. He’s a senior member of IEEE

and a member of the ACM. You can read

his blog at http://steve.vinoski.net/blog

and contact him at vinoski@ieee.org.

Figure 6. The acceptor processes
can overrun the proxy process,
depending on the number of
concurrent Web clients. When
processing a client connection, an
acceptor sends a message to the
proxy process message queue; for
each message, the proxy uses its
connection to communicate with the
back-end service. The connection to
the back-end service is held in the
proxy process state. The fact that all
acceptors share the proxy resource
results in contention, high latency, and
possible message queue growth that
can lead to out-of-memory conditions.

Acceptors

Proxy

Message queue

Connection to
back-end service

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

IC-15-02-fun.fin.indd 89 2/21/11 12:33 PM

