
MARCH/APRIL 2010	 1089-7801/10/$26.00 © 2010 IEEE	 Published by the IEEE Computer Society� 89

The Functional Web

I n the November/December 2008 issue, as part
of his old “Toward Integration” column, Steve
Vinoski published his “RESTful Web Services

Development Checklist.”1 There, he covered sev-
eral areas and issues to which developers of
RESTful (Representational State Transfer) Web
services should pay close attention. His checklist
covered the following areas of concern:

•	 identifiers, resources, and applications;
•	 representations and media types;
•	 HTTP methods; and
•	 conditional GET.

In this column, we use this checklist to eval-
uate Webmachine (see the Web extra at www.
computer.org/cms/Computer.org/dl/mags/ic/
2010/01/extras/mic2010020089s.pdf), a REST-
ful Web services development framework imple-
mented in Erlang. In “Build Your Next Web
Application with Erlang,” Dave Bryson and
Vinoski provided a high-level overview of Web
machine.2 Here, we’ll take a more thorough look
at the abstractions and mechanisms Webmachine
supplies to RESTful Web services developers.

Not Your Typical Framework
Web services frameworks typically fall into one
of the following broad categories:

•	 Many frameworks lean heavily toward three-
tier applications and focus almost entirely
on backend database integration and object-
relational data mappings.

•	 Some cater to users of a particular program-
ming language by hiding the Web behind
language-specific constructs.

•	 Others provide low-level access to HTTP
requests and responses but don’t provide much
in the way of abstractions, models, or rules.

Typically, only the last of these approaches is
in any way helpful to developers of RESTful Web

services because, for a given request, they can
access all the HTTP headers and method names,
the full target URI, and any request body. The
approach also allows full control over response
headers and bodies. However, such access is usu-
ally quite raw and can thus be difficult to use. The
first two approaches often work against REST-
ful services developers because they provide
abstractions that hide Web details in an attempt
to make things easier for the average developer.
In doing so, they hide the very details required
for implementing RESTful Web services.

Webmachine doesn’t fit into any of these cate-
gories. Instead, it focuses on systematically apply-
ing standard HTTP semantics to Web application
resources. The fundamentals of Webmachine were
originally inspired by the seminal “HTTP head-
ers status diagram” published in January 2007
by Alan Dean, currently the CTO of MoveMe.com
(www.moveme.com). This decision flowchart’s
current version (see http://webmachine.basho.
com/diagram.html), which the Webmachine team
helped to augment and improve beyond the origi-
nal, shows how a Web server or application can
examine and analyze the headers of an incoming
HTTP request to know how to respond to it appro-
priately. It accurately and succinctly codifies
much of the HTTP 1.1 specification’s (RFC 2616)
prose. Because of the flowchart’s diagrammatic
nature, most developers find that not only is it
straightforward to follow, but it also makes it eas-
ier to understand the HTTP specification’s details.

Getting Started with Webmachine
Thanks to some handy helper scripts, getting
your first Webmachine application running is
trivial. Assuming you’ve installed Erlang, and
you’ve already downloaded Webmachine fol-
lowing the instructions available at http://web
machine.basho.com/docs.html, the following
commands create a new skeleton application for
you under the directory /tmp/skel and execute
the application:

Developing RESTful Web
Services with Webmachine
Justin Sheehy • Basho Technologies
Steve Vinoski • Verivue

The Functional Web

90 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

./scripts/new_webmachine.erl \
 skel /tmp
cd /tmp/skel
make
./start.sh

Once the application executes,
point your browser to http://local
host:8000/ to display the simple
message “Hello, new world.” This
indicates that the Webmachine Web
server is running and can direct
requests for the “/” resource to the
generated skeleton code. The specific
part of the generated code that pro-
vides the response message is

to_html(ReqData, State) ->
 {"<html><body>" ++
 "Hello, new world" ++
 "</body></html>",
 ReqData, State}.

Even if you’re not an Erlang pro-
grammer, it’s not too hard to figure
out the purpose of this function.
From the incoming HTTP request
headers — specifically, the Accept
header — Webmachine determines
that the client is requesting an HTML
representation of the “/” resource. To
obtain that representation, Webma-
chine invokes the to_html func-
tion of the code implementing that
resource, then returns the resulting
representation to the client.

Alternatively, we could send a
request with an Accept header for
some media type other than HTML.
Here, we send such a request using
curl:

�$ curl -D /dev/tty -H ‘Accept:
 image/jpeg’
 http://localhost:8000/
HTTP/1.1 406 Not Acceptable
Server: MochiWeb/1.1
 WebMachine/1.5.2
Date: Thu, 21 Jan 2010
 04:56:47 GMT
Content-Length: 0

This time, we receive HTTP

response code “406 Not Accept-
able,” which means the server was
unable to supply a representation of
the requested resource fulfilling the
requested media type. In this case,
Webmachine checked the Accept
header against the resource’s media
types, found no match, and returned
the error response.

This example focuses solely on
processing just the HTTP Accept
header and so glosses over several
other useful details. Plus, it uses
simplified generated code in place of
the code a developer would normally
have to write for a real application.
Even so, this simple example illus-
trates Webmachine’s fundamentals:
it applies the rules of HTTP 1.1 to
each incoming request as the basis
for working with your Web appli-
cation to produce the most suitable
response for each request.

As we work through the RESTful
Web services development checklist
and evaluate Webmachine against it,
it’s important to keep in mind that
the decision-flow diagram to which
we referred earlier isn’t just a nov-
elty, but rather shows the explicit
codepath Webmachine takes to pro-
cess requests and handle resources,
representations, methods, status
codes, and other RESTful Web ser-
vice concerns.

Identifiers, Resources,
and Applications
RESTful Web service applications
use URIs to identify their resources.
To their clients, these URIs are
opaque identifiers, but to the service
applications themselves, URIs act
similarly to keys the services can use
to associate implementation artifacts
with the respective Web resources
they implement. For example, a Web
service dealing with orders might
create URIs with paths of the form
/orders/<order ID>, in which
“<order ID>” is some sort of identi-
fier that lets the service find specific
order details in a database. When

a Web service receives an HTTP
request, it typically breaks the URI
for the target resource into its com-
ponents and uses path elements to
help find the right function or object
to which it can dispatch the request.

Webmachine provides a straight-
forward yet powerful approach for
service applications to specify URI-
based dispatching. Applications pro-
vide a dispatch map, which is a list
of 3-tuples. Such a 3-tuple might
appear as follows:

{[“portal”, “web”, “internet”,
 “home”],
 internet_computing_resource,
 []}

Each 3-tuple consists of the follow-
ing items:

•	 A pathspec. This is a list of
URI path components called
pathterms split along the ‘/’
characters in the URI. For
example, given the URI path
/portal/web/internet/home, its
equivalent pathspec would consist
of the pathterms “portal,” “web,”
“internet,” and “home,” as shown
earlier. Pathterms could be strings,
as shown here, or Erlang atoms,
including the atom '*', which
serves as a wildcard.

•	 A Webmachine resource. This
is an Erlang atom identifying
a module. The module exports
functions that inform Webma-
chine about how to construct
certain HTTP headers for the
resource, what content types the
resource supports, and provide
other information pertinent to the
resource this module represents.

•	 A list of arguments. Before Web-
machine asks a resource module
to handle a request, it invokes
its init function and passes to it
this third element of the 3-tuple.
This list can be empty.

When Webmachine receives a cli-

MARCH/APRIL 2010� 91

Developing RESTful Web Services

ent’s request, it iterates through the
dispatch map and dispatches the
request to the first resource whose
pathspec matches the request URI.
The resource pathspec’s string path-
terms must match literally, whereas
atom pathterms match any single
URI path component. The special '*'
atom matches any number of path
components but only at the URI’s tail.
Webmachine passes all atom matches
into the chosen resource as part of
the dispatch and includes any query-
string data from the URI as well.

Webmachine’s approach to URI
dispatching is both succinct and
highly flexible. Applications can
easily use a single wildcard atom to
have all URIs dispatched to a single
resource implementation, can choose
to specify a fixed set of pathspecs and
associated resources using only string
pathterms to enforce exact matches,
or can take the middle ground and
use a mixture of atoms and strings.
They can also order the pathspecs
in their dispatch map so that certain
resources will match before others.
The end result is that Webmachine
lets developers define dispatching
rules briefly and precisely.

Representations
and Media Types
Exchanging representations of resource
states between server and client is a
fundamental REST tenet. Within a
Web framework, resources are rep-
resented in terms of a programming
language, typically the one used to
implement the framework itself or as
data within some form of database. To
support RESTful services, frameworks
must, at a minimum, enable resource
implementations to convert their state
to the media types each client declares
to be acceptable.

To tell Webmachine what content
types it supports, a resource mod-
ule implements a function named
content_types_provided. Webma-
chine expects this function to return
a list of pairs (a “property list” in

Erlang terminology) in which each
pair consists of a media type name
and a resource module function to
handle that media type. We provided
an example of a media type handler
function earlier when we described
the to_html function in the gener-
ated Webmachine demo code.

A resource module’s content_
types_provided function lets
Webmachine handle HTTP con-
tent negotiation properly. If a cli-
ent provides an Accept header in a
request that contains at least one of
the media types the target resource
module’s content_types_provided
function provides, Webmachine will
invoke the resource’s media type
handler function corresponding to
that media type to let the resource
provide a representation of its state

in a form acceptable to the client.
Clients can specify a number of

media types in an Accept header
and can also supply varying q val-
ues in the header to specify which
types it prefers over others. Webma-
chine implements the HTTP rules for
handling multitype Accept headers,
negotiating between what the cli-
ent requests and what the resource
provides and thereby ensuring the
content type returned to the cli-
ent is the best possible match. If no
content-type overlap exists between
client and resource, Webmachine
returns a “406 Not Acceptable” HTTP
status code (see the HTTP decision
flowchart, coordinates C7). We saw
an example of this earlier when we
asked our demo resource for a JPEG
representation, and the resource

itself provided only the HTML con-
tent type. Resources declare the
media types they support, and Web-
machine handles the rest.

HTTP Methods
GET, PUT, POST, and DELETE are
HTTP’s four basic methods, and HEAD
and OPTIONS can be useful as well.
Simple stand-alone static resources,
such as files and images, normally
support only GET and HEAD, but
RESTful services usually involve
multiple resources and so use all the
core HTTP methods.

Webmachine makes it trivial for
a resource module to indicate the
HTTP methods it supports: the mod-
ule need only export an allowed
_methods function that returns a
list of supported method names. If a

client sends a request to a resource
with a method not on the list, Web-
machine returns the HTTP status
code “405 Method Not Allowed” (see
the HTTP decision flowchart, coor-
dinates B10).

If a client wants to find out
what methods a resource supports,
it can send an OPTIONS request. If
a resource supports the OPTIONS
method, Webmachine expects it to
export an options function that
returns a list of response head-
ers. An OPTIONS response normally
includes an Allow header to indicate
the methods a resource supports, so
developers should make sure their
options function’s return values
always include that header set to an
appropriate value.

Due to the general nature of the

The core element of different behaviors is
the resource, not the method, so the various
resource functions that Webmachine invokes
aren’t generally separated by method.

The Functional Web

92 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

HTTP POST method, it often requires
special attention within a Web ser-
vices framework. Some resources
treat it as a way to create new
resources, whereas others treat it as a
general request-processing method.
A resource that supports POST as a
resource-creation method imple-
ments the post_is_create function
to return a true value; this causes
Webmachine to invoke the resource’s
create_path function to supply the
new URI for the new resource (see the
HTTP decision flowchart, coordinates
P11). On the other hand, if post_is
_create returns a false value, which
is the default, Webmachine invokes
the resource’s process_post func-
tion to take care of the POST request.
Similarly, the delete_resource and
delete_completed functions let
resources control whether they sup-
port the DELETE method and, if so,
how deletions are carried out.

Note that Webmachine doesn’t
require developers to write a function
for each supported HTTP method. The
core element of different behaviors is
the resource, not the method, so the
various resource functions that Web-
machine invokes aren’t generally
separated by method. This approach
significantly helps developers focus
on resources and representations
rather than forcing them to treat
HTTP methods as being the primary
contract between the framework and
resource implementations. Indeed, if
you follow the decision flow diagram
from its entry point at coordinates
B14 to the various end states, you
find that most HTTP method consid-
eration occurs toward the ends of the
various paths.

Conditional GET
A significant portion of the Web-
machine decision-flow diagram is
dedicated to handling HTTP head-
ers related to conditional requests,
which are critical to the general
scalability of the Web. Important
RESTful properties and constraints

such as visibility, statelessness, and
self-describing messages let inter-
mediaries accurately cache and
serve responses they obtain from
origin servers, whereas HTTP con-
ditional headers enable clients and
servers to control how and when
intermediate responses are cached,
validated, and served.

Etag and If-None-Match are
examples of conditional HTTP head-
ers. A resource can set a value into
an Etag header in a response, for
which the value is a hash or other
compact representation of the
resource’s current state. A client
receiving such a response can save
the Etag header value and later set it
into an If-None-Match header in its
next request to the same resource; if
that value still matches the resource
state, the resource can return the
HTTP status “304 Not Modified” to
indicate that it hasn’t changed in the
interim (see the HTTP decision flow-
chart, coordinates L18).

To facilitate conditional requests,
resources can provide several func-
tions. The last_modified function
lets a resource control the HTTP
Last-Modified response header
date setting — for example, this
is useful with the conditional If-
Modified-Since request header.
Similarly, the expires function
lets a resource control the Expires
response header date setting, which
allows intermediaries to know how
long they can cache a representation
the resource returns before it’s con-
sidered stale and in need of revali-
dation. The generate_etag header
lets a resource calculate a value for
storage in the Etag response header.

W ebmachine is aptly named,
given how it accurately and

usefully codifies HTTP rules. That
feature alone is valuable because it
saves RESTful Web services devel-
opers from having to memorize all
the details of the HTTP 1.1 specifica-

tion, which isn’t a trivial task. But it
also provides a framework interface
for resource implementations that’s
both rich and minimal, making the
developer provide only those func-
tions required for a given resource
when the sensible defaults won’t
work. It easily addresses all the
items of the RESTful Web services
development checklist.

Developers who already under-
stand REST and HTTP will find Web-
machine intuitive, whereas those
who are still learning REST or HTTP
will come to understand them much
more thoroughly and correctly with
Webmachine’s guidance. The Web-
machine decision-flow diagram is
often the only documentation devel-
opers need to successfully imple-
ment a resource. Finally, the fact
that the framework is implemented
in Erlang, a language with a simplic-
ity that belies its unmatched support
for highly reliable and scalable sys-
tems, makes Webmachine appealing
and advantageous.�

References
1.	 S. Vinoski, “RESTful Web Services

Development Checklist,” IEEE Internet

Computing, vol. 8, no. 6, 2004, pp. 94–95.

2.	 D. Bryson and S. Vinoski, “Build Your

Next Web Application with Erlang,” IEEE

Internet Computing, vol. 13, no. 4, 2009,

pp. 93–96.

Justin Sheehy is the CTO of Basho Technolo-

gies, the company behind Webmachine

and Riak. His research interests include

resilient systems and applying program-

ming language implementation tech-

niques to unusual problems. He performed

both undergraduate and graduate studies

in computer science at Northeastern Uni-

versity. Contact him at justin@basho.com.

Steve Vinoski is a member of the technical

staff at Verivue in Westford, Massachu-

setts. He’s a senior member of the IEEE

and a member of the ACM. You can read

Vinoski’s blog at http://steve.vinoski.net/

blog/ and reach him at vinoski@ieee.org.

