
SEPTEMBER/OCTOBER 2010	 1089-7801/10/$26.00 © 2010 IEEE	 Published by the IEEE Computer Society� 87

The Functional Web

L ast issue, Aaron Bedra wrote about Com-
pojure, a Clojure-based Web framework.1
Here, I follow up on his article, delving into

one particular aspect of Web development using
Clojure and Compojure: templating.

On a recent project, I had the pleasure of
working with Bedra, using Compojure. I had
done Clojure programming before, but that proj-
ect was the first time I had used it for Web devel-
opment. One of the earliest decisions we had to
make was which templating system to use.

Compojure Out of the Box
Typically, Compojure applications use the clj-
html library, which is a builder-like HTML-
generation library. The examples Bedra provided
in his article used that system.1 Figure 1 shows
another example, slightly refactored from the
version he supplied: the sample application’s
main (or index) page.

The render method renders a page body
within a standard layout, which always includes
a login box (this box automatically becomes a
logout link if the user is logged in). You can see
that clj-html’s HTML macro reads a data struc-
ture that represents an HTML document or frag-
ment and generates HTML from that structure.

Every Web framework should include a library
for programmatically generating HTML, and clj-
html is a good one. However, many situations
arise in which you’d prefer to use a more tradi-
tional templating system. Particularly if you’re
working with HTML-savvy designers, you’d like
for the HTML in your system to look like HTML,
rather than Lisp code, as in clj-html’s case.

StringTemplate and
Model/View Separation
For our project, Bedra and I chose the StringTem-
plate templating library for Java. But, of course,
Clojure runs on the Java Virtual Machine (JVM)
and provides wonderful, convenient access to the

underlying Java libraries, so it’s easy to wrap
StringTemplate to use in Compojure.

Initially, StringTemplate seemed like a very
good fit for Clojure. The templating language itself
is built on functional principles — for instance,
calling another template is modeled as a function
application. Additionally, StringTemplate was
designed to enforce a strong separation between
the domain model and the view layer; it attempts
to eliminate business logic from templates. Only
four template constructs are provided:

•	 using the value of an object’s attribute,
•	 conditionally calling a template on the basis

of whether an attribute is present,
•	 calling a template with arguments (including

recursive calls), and
•	 mapping a template over a collection (that is,

simple iteration).

In the end, StringTemplate proved to be a
poor fit for Compojure. Furthermore, the mis-
match provides some insight into the general
templating problem and what we would like in
a templating system for functional languages.

StringTemplate was designed for an object-
oriented system — that is, the parameters passed
to a template are assumed to be objects, and the
template can refer to attributes of those objects.
The usual JavaBean-style objects are supported
(with attributes represented by accessor meth-
ods), as are maps (Java’s term for hashes or asso-
ciative arrays). As we were working in Clojure,
we chose to pass maps into our templates.

However, we found ourselves wanting richer
constructs in the templates. Generating HTML
can be a complex task all by itself, and String-
Template’s simple conditionals (which can depend
on the presence or absence of an attribute, but
not its value) weren’t enough. Even very simple
things proved difficult, like choosing a singular
or plural noun based on the value of a number.

Clojure Templating Libraries:
Fleet and Enlive

Glenn Vanderburg • InfoEther

The Functional Web

88 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

We found ourselves building a layer
to preprocess the data before handing
it off to the view.

All this led us to wonder what all
those happy StringTemplate users
are thinking. Well, it turns out that
StringTemplate’s separation of model
and view has a big loophole in the
object-oriented world, where it’s
widely used. Because attribute access
is most often mediated by an acces-
sor method, useful behavior and
transformations can occur in those
methods. However, because we were
using simple maps as input to our
templates, rather than behavior-rich
domain objects, that option wasn’t
open to us.

Of course, Clojure’s Java interop-
erability is very good, and it would
have been easy for us to build true
Java-style objects, attaching methods
to take care of those template-time
chores. However, that didn’t seem like
the right approach for Compojure.

Further reflection taught us that we
really wanted something very differ-
ent from a templating library.

The oft-repeated dictum “no logic
in views” is too simplistic. HTML
generation (or, more generally, data
display in any format) has its own
complexities, and sometimes a lot of
logic is required to do it correctly.
The real rule is “only view logic in
views.” A good templating system
will acknowledge that view logic is
necessary and will provide mecha-
nisms (and encouragement) to the
programmer to keep that view logic
just as well factored as the rest of
the system.

I’m aware of two templating sys-
tems for Clojure that I think provide
better solutions. They’re very differ-
ent in approach, but both make room
for presentation-oriented logic, and
both make it easy to keep that code
well factored, with very little logic
inside the templates themselves.

Fleet
Fleet is a Clojure templating library
written by Ilia Ablamonov (see
http://github.com/Flamefork/fleet).
It’s a fairly traditional templating
system, in that it allows embedding
of properly delimited programming
language code within the template
itself. Obviously, that opens the door
for the programmer to insert too
much code (or inappropriate, mis-
placed code) into the template. Fleet
relies on the programmer’s disci-
pline to avoid that problem but pro-
vides mechanisms that make it easy
to factor presentation logic out of the
template and keep it well separated
from the application’s core domain
logic. Figure 2 shows what the main
page of Bedra’s system would look
like in Fleet.

You can initialize the Fleet sys-
tem by a call to fleet-ns. The first
argument is a namespace, and the
second is the path to a directory in
the file system that contains all of
the template files. Each template is
turned into a function within that
supplied namespace. So, for exam-
ple, the template file “templates/
index.html.fleet” becomes the func-
tion index in the view namespace.

Within the template, embedded
Clojure code occurs within <(…)>
brackets, which Fleet interprets as
function calls. Fleet applies the str
function to the result of those calls
and inserts that string representa-
tion into the template at that point.
If a string within such embedded
Clojure code begins with > and ends
with <, the system also processes
that string as a Fleet template and
removes those beginning and trail-
ing angle brackets.

With those templates and decla-
rations in place, rendering an index
page with some body text just takes
this call: (view/index “Hello,
World!”).

Numerous other features and
details are available, but the core
question is, how does Fleet stand

(defn login-box
 []
 (if (is-logged-in)
 (do [:span {:class “login-text”}
 (get-user) “ - “
 [:a {:href (get-logout-url “/”)}
 “sign out”]])
 [:span {:class “login-text”}
 [:a {:href (get-login-url “/”)} “sign in”]]))

(defn render
 “The base layout for all pages”
 [body]
 (html
 (doctype :html4)
 [:head (include-css “/stylesheets/style.css”)]
 [:body
 [:div {:class “container”}
 [:div {:id “login”} (login-box)]
 [:div {:id “content”} body]]]))

(defn index
 [request]
 (render “Hello App Engine”))

Figure 1. HTML generation. This code generates a simple webpage using
the clj-html library. No traditional template exists; the page is modeled as a
Clojure data structure.

SEPTEMBER/OCTOBER 2010� 89

Clojure Templating Libraries

up to the criteria I mentioned ear-
lier? As I mentioned, Fleet doesn’t
prohibit logic in the template — that
discipline is up to the program-
mer. The way Fleet uses namespaces
makes it easy to factor your pre-
sentation-oriented code into sepa-
rate files in your code base, as I’ve
done in this example (you should
define helper methods intended to be
called from templates in the “help-
ers” namespace). This also means
that it stands out if the template calls
other functions that aren’t appropri-
ate there, as those methods must be
namespace-qualified. Overall, Fleet
is an excellent, pragmatic choice for
a Clojure-based templating system.

Enlive
Christophe Grand wrote Enlive (see
http://github.com/cgrand/enlive),
and its approach to the templating
task is very different from Fleet’s. It
also does an excellent job, however.
Rather than allowing embedded Clo-
jure code within templates, Enlive
templates contain only HTML. More
correctly, an Enlive template has two
pieces: an HTML file and a transfor-
mation function. Enlive supports
a convenient notation for defining
transformation functions, based on
CSS selector notation. When ren-
dering a template, Enlive calls the
transformation function to massage
the HTML.

Figure 3 shows the same example
I’ve been using so far, now written
using Enlive. (This version uses the
same “helpers.clj” file from the Fleet
example.)

A function defined with def
template builds an entire HTML
file. If you want to build a fragment
to insert into a larger HTML file,
use defsnippet. Enlive makes it
easy to group multiple snippets into
a single HTML file, although, in this
case, snippets.html contains only
one snippet.

A transformation function’s body
contains selectors and transformation

expressions. For each selector, Enlive
finds the HTML document’s match-

ing part and runs the transformation
expression against it. The selectors

;; file templates/login-box.html.fleet ---------
<div id=”login”>

 <(if (is-logged-in)
 “> <(get-user)> -
 <(link-to “sign out” (get-logout-url “/”))> <”
 (link-to “sign in” (get-login-url “/”)))>

</div>

;; file templates/index.html.fleet -------------
<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
 <head>
 <link type=”text/css” href=”/stylesheets/style.css”
 rel=”stylesheet”/>
 </head>
 <body>
 <div class=”container”>
 <(login-box)>
 <div id=”content”>
 <(str data)>
 </div>
 </div>
 </body>
</html>

;; file src/helpers.clj ----------------------------
; function bodies omitted for brevity

(ns helpers)

(defn is-logged-in [] ...)

(defn get-user [] ...)

(defn link-to [label path] ...)

(defn get-login-url [prefix] ...)

(defn get-logout-url [prefix] ...)

;; file src/view.clj -------------------------------
(ns view
 (:use fleet helpers))

(fleet-ns view “templates”)

Figure 2. Fleet templates and supporting code. Fleet templates include
embedded Clojure expressions, in the style of many other templating systems.
This code generates the same page as the code in Figure 1.

The Functional Web

90 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

use concepts from CSS selectors,
although the syntax is different.
The transformations replace, insert,
or remove portions of the HTML,
using Enlive-supplied functions like
content and prepend.

With Enlive set up as I’ve
described, you can render an index
page in almost the same way as with
Fleet. The only difference is that the
template function returns a collec-
tion of pieces rather than a single
string, so you have to concatenate

them together with the str function
using (apply str (view/index
“Hello, World!”)).

Obviously, Enlive keeps the HTML
files free of logic. Although it doesn’t
make explicit use of namespaces the
way Fleet does, it naturally obeys
Clojure’s namespace rules, and it’s
easy to group templates and helper
functions so that your presentation
code stays clean and well factored.
The Enlive model of HTML files and
transformation functions feels like

an excellent fit for a functional lan-
guage like Clojure. Its only signifi-
cant limitation is that you can use
it with only XML or HTML files;
the reliance on CSS selectors means
that you can’t use Enlive to massage
other kinds of files.

M y experience using String
Template in a Clojure Web appli-

cation taught me something that really
should have been obvious: a templat-
ing system designed for an object-
oriented language really isn’t a very
good fit for a functional language.

But excellent alternatives are
available that work very well with
Clojure — namely, Fleet and Enlive.
Although their philosophies are very
different, they both acknowledge
the need for presentation-oriented
code, and both work well with Clo-
jure’s namespaces to enable good
separation of presentation code from
other parts of the system and from
the HTML templates themselves.
And, of course, a low-level HTML-
generation library such as clj-html
has a place in any Web project, serv-
ing as a complement to a full-fledged
templating system.

If you’re interested in Clojure for
Web programming, I encourage you
to start with the Google App Engine
application Bedra wrote about in his
article1 and then expand from that
base using either Fleet or Enlive,
depending on your taste. Each has
a lively user community, making
Clojure a vibrant platform for func-
tional Web development.�

Reference
1.	 A. Bedra, “Getting Started with Google

App Engine and Clojure,” IEEE Internet

Computing, vol. 14, no. 4, 2010, pp. 85–88.

Glenn Vanderburg is chief scientist at Info

Ether (http://infoether.com), where he’s

a programmer, technical lead, speaker,

trainer, and hands-on architect. Contact

him at glv@vanderburg.org.

;; file src/templates/snippets.html ----------------
<div id=”login”>
 Login form or logout link
</div>

;; file src/templates/index.html -------------------
<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.01//EN”
 “http://www.w3.org/TR/html4/strict.dtd”>
<html>
 <head>
 <link rel=”stylesheet” type=”text/css”
 href=”/stylesheets/style.css”/>
 </head>
 <body>
 <div class=”container”>
 <div id=”content”>body text</div>
 </div>
 </body>
</html>

;; file src/view.clj -------------------------------
(ns view
 (:use net.cgrand.enlive-html helpers))

(defsnippet login-box “templates/snippets.html” [:#login] []
 [:div#login :span.login-text]
 (content
 (html-snippet
 (if (is-logged-in)
 (str (get-user) “ - “
 (link-to “sign out” (get-logout-url “/”)))
 (link-to “sign in” (get-login-url “/”))))))

(deftemplate index “templates/index.html” [body-text]
 [:div.container] (prepend (login-box))
 [:div#content] (content body-text))

Figure 3. Enlive templates and supporting code. Instead of allowing embedded
Clojure code, Enlive transforms HTML files using transformation functions.
Again, this code generates the same page as the code in Figures 1 and 2.

