
The Functional Web
Editor: Steve Vinoski • vinoski@ieee.org

NOVEMBER/DECEMBER 2011 1089-7801/11/$26.00 © 2011 IEEE Published by the IEEE Computer Society 97

F unctional programming is a productive 
approach to writing software that can be 
successfully applied to Web development. 

Functional Web development has historically 
focused on the server side with languages such 
as Erlang, Haskell, Scala, and Clojure. However, 
full-stack Web applications increasingly rely on 
sophisticated client-side components that must 
execute in the browser’s JavaScript runtime 
environment.

Clojure (http://clojure.org) is a dynamic, 
Lisp-like programming language that origi-
nally targeted the Java Virtual Machine (JVM). 
It’s been successful on the JVM platform 
because of its combination of expressiveness, 
performance, and host interoperability. Clo-
jureScript brings these qualities to JavaScript 
platforms with a ClojureScript-to-JavaScript 
compiler and associated tool chain based on 
the Google Closure suite (http://code.google.
com/closure/).

Here, I introduce the ClojureScript lan-
guage and its Google Closure substrate, dem-
onstrate how to use ClojureScript in dynamic 
client-side Web applications, and discuss 
Clojure Script’s unique approach to JavaScript  
compilation.

Getting Started
Like Clojure, ClojureScript is a Lisp that you 
can explore interactively at the read-eval-
print loop (REPL). ClojureScript’s develop-
ers have paid particular attention to being 
able to get such a REPL up and running 
quickly. Let’s take advantage of that to try  
ClojureScript.

First, download and enter the ClojureScript 
project:

$ git clone \ 
git://github.com/clojure/clojurescript 
$ cd clojurescript

Bootstrap your ClojureScript installation by 
downloading Clojure and the Google Closure 
tools:

$ script/bootstrap

Now, you’re set to explore the ClojureScript 
REPL:

$ script/repljs

This REPL will be familiar to users of Clojure 
and other dynamic languages; the prompt reads 
the typed expressions, evaluates them on the 
fly, and prints the results:

ClojureScript:cljs.user> (+ 1 2 3)
6

Here, we use the typical Clojure list-based 
functional call syntax and take advantage 
of the variadic + function defined in Clojure-
Script. In general, the syntax and semantics of  
ClojureScript’s core language features are simi-
lar to those of Clojure, even though ClojureScript 
executes in a JavaScript environment, whereas 
Clojure executes on a JVM.

The standard Clojure data types and struc-
tures, and their associated manipulation 

ClojureScript: Functional 
Programming for  
JavaScript Platforms
Mark McGranaghan • Heroku

IC-15-06-Funw.indd   97 10/11/11   9:53 AM



The Functional Web

98 www.computer.org/internet/ IEEE INTERNET COMPUTING

functions, are also available in 
ClojureScript:

ClojureScript:cljs.user>  
(def person

 (-> {:name "Bob"} (assoc 
:occupation "Programmer")))

{:name "Bob", :occupation 
"Programmer"}

ClojureScript:cljs.user>  
(def attrs (keys person))

(:name :occupation)

ClojureScript:cljs.user>  
(conj (set attrs) :height)

#{:height :occupation :name}

This short series of expressions 
demonstrates several features that 
ClojureScript brings to the Java-
Script environment. In this first 
expression, we take a literal map 
{:name "Bob"} with a keyword key 
:name and use the -> macro in com-
bination with the assoc function to 
produce a new, updated version of 
that map. As in Clojure, this update 
is functional and doesn’t mutate the 
original map. In the second expres-
sion, we extract the sequence of keys 
from that resulting map, and in the 
third, we transform that sequence 
into a set and add a third element to 
that set.

These latter two examples illus-
trate two specific data abstractions —  
the sequence and the set — that  
ClojureScript brings to the JavaScript 
environment. Indeed, JavaScript itself 
offers only one data structure — an 
associative array with string keys — but  
the ClojureScript compiler and run-
time library transparently provide a 
full suite of functional data structures 
on top of this JavaScript primitive.

These examples also highlight a 
subtle but important aspect of Clojure-
Script: it’s a semantics-altering 
compiler as opposed to a syntactic 
layer above JavaScript. CoffeeScript 
and several other LISP-to-JavaScript 
compilers take the latter approach, 
but ClojureScripts’s semantics-level 
approach is ultimately what lets it 
bring the robustness of functional 
programming to the browser.

Although a ClojureScript applica-
tion benefits from access to Clojure-
like language and runtime facilities, 
it can still easily participate in the 
host JavaScript environment. For 
example,

ClojureScript:cljs.user> 
(.toFixed 0.9876 2)

"0.99"

Here, we use the .toFixed func-
tion that’s defined on JavaScript 

numbers to convert a float to a  
string. As in Clojure itself, access 
to host features and libraries is 
designed to be eff icient in terms  
of both syntax and runtime 
execution. This first-class JavaScript 
host access is important for Clojure-
Script when it’s interoperating with  
browser facilities and pure-JavaScript  
libraries.

Compilation  
and Deployment
Although the ClojureScript REPL is 
useful for exploration, ClojureScript 
is designed to be compiled for efficient 
deployment to Web browsers and 
other client environments. Let’s try  
a simple Web-based ClojureScript 
example to demonstrate this.

Figure 1 shows the basic Clojure-
Script file for our application.

When we invoke the talk function 
defined in this ClojureScript, it will 
use ClojureScript set and string 
manipulation and the JavaScript 
alert function to render a list of 
recommended foods to the user.

To run this code, create a web-
page in which to host the compiled 
ClojureScript (see Figure 2).

Now, we need to compile the 
ClojureScript to the target location 
expected by the script tag. Clojure-
Script ships with a command-line 
tool cljsc that serves as a simple 
bridge to a Clojure-based compilation 
library. We’ll use this tool to compile 
our demo ClojureScript source file:

$ bin/cljsc demo.cljs \ 
{:optimizations :advanced} >\ 
demo.js

Open index.html in a Web 
browser and click on the “what to 
eat?” button; an alert triggered by 
the compiled ClojureScript code 
should pop up showing you some 
options.

Now that we’ve looked at some basic 
examples of ClojureScript, let’s explore 
a more sophisticated application  

  (ns demo
   (:require
    [clojure.set :as set]
    [clojure.string :as string]))

  (def healthy
   #{"lettuce" "fish" "apples" "carrots"})

  (def tasty
   #{"apples" "cake" "candy" "fish"})

  (defn ^:export talk []
   (js/alert
    (str
     "Some healthy and tasty foods are: "
     (string/join ", " (set/intersection healthy tasty)))))

Figure 1. Set and string manipulation with ClojureScript (demo.cljs).

IC-15-06-Funw.indd   98 10/11/11   9:53 AM



ClojureScript: Functional Programming for JavaScript Platforms

NOVEMBER/DECEMBER 2011 99

and the ClojureScript compilation 
model itself.

An Example  
ClojureScript Application
A more complete ClojureScript 
example application can help us bet-
ter understand what ClojureScript 
offers, how it works, and how it 
interacts with its JavaScript host.

This example app will imple-
ment an interactive ClojureScript-
to-HTML renderer. It will work by 
reading text input from the user, 
parsing that into ClojureScript data, 
rendering the data into HTML text, 
and then displaying that text in real 
time on the page. For example, the  
app might read the following Clojure-
Script data structure:

[:div {:id "demo"}  
"hello world!"]

and render it to this HTML snippet, 
which would then be displayed in the 
browser:

<div id="demo">hello  
world!</div>

The app will use the ClojureScript 
standard libraries along with the 
Google Closure DOM and browser 
event libraries, and will execute 
entirely client-side in the user’s 
browser. All this client-side code will 
pass through the ClojureScript/Closure  
optimizing compiler tool chain for 
delivery to the running app.

Figure 3 demonstrates the app’s 
user-facing shape with the static 
HTML component.

This file is a simple HTML skel-
eton for the app’s layout and a hook 
for the dynamic ClojureScript piece 
of the application. Note that the app 
includes three fields: a text area 
where users can enter their Clojure 
input, an output area for the com-
piled HTML, and an output area for 
the rendered HTML. Figure 3 also 
includes some sample input text to 

demonstrate how the tool works 
and provide initial test data for the 
renderer.

The ClojureScript component 
will update the page whenever you 
change the input text. These updates 
will be implemented with a combi-
nation of core ClojureScript libraries  

as well as browser libraries from 
Google Closure. We’ll require these 
libraries into a renderer ClojureScript 
namespace definition (see Figure 4).

ClojureScript namespaces are 
similar to Clojure namespaces: they 
explicitly define the dependencies 
for their portion of the application  

  <html>
   <head>
    <script type="text/javascript" src="demo.js">
    </script>
   </head>
   <body>
    <input type="button" value="what to eat?" 
     onClick="demo.talk()">
   </body>
  </html>

Figure 2. HTML skeleton for the demo ClojureScript application (demo.html).

  <html>
   <head>
    <title>Renderer</title>
   </head>
   <body>
    <h1>Renderer</h1>
    <h2>Input</h2>
    <textarea id="input-text" rows="6" cols="82">
  [:div {:id "demo"} [:h3 {} "Hello ClojureScript!"]]
    </textarea>
    <h2>Output - Compiled</h2>
    <div id="output-compiled"></div>
    <h2>Output - Rendered</h2>
    <div id="output-rendered"></div>
    <script type="text/javascript" src="renderer.js">
    </script>
   </body>
  </html>

Figure 3. Skeleton, JavaScript hook, and example input (renderer.html).

  (ns renderer
   (:require
    [clojure.string :as string]
    [cljs.reader :as reader]
    [goog.dom :as dom]
    [goog.events :as events]
    [goog.events.EventType :as event-type]))

Figure 4. Declaring the renderer namespace and its dependencies  
(renderer.cljs).

IC-15-06-Funw.indd   99 10/11/11   9:53 AM



The Functional Web

100 www.computer.org/internet/ IEEE INTERNET COMPUTING

and define aliases with which we 
can easily address these dependent 
namespaces. ClojureScript provides  

the clojure.* and cljs.* name-
spaces, while those under goog.*  
come from the Google Closure library.

At the core of this ClojureScript 
application is the actual HTML com-
piler. This compiler will take as input 
a ClojureScript data structure and 
return as output HTML text. This 
transformation is seen in Clojure 
libraries such as clj-html and hic-
cup; Figure 5 shows a simple defi-
nition to demonstrate ClojureScript  
usage.

Finally, we tie the HTML com-
piler into the actual webpage using a 
browser event listener implemented 
by the Google Closure library (see 
Figure 6).

Next, we define the core render 
loop in the render function. This 
function will extract the user input 
area’s contents, use the ClojureScript 
read-string function to map that 
input into a ClojureScript data struc-
ture, pass that form into the compiler 
described previously, and then ren-
der that output as both a raw HTML 
string and actual content on the 
webpage.

The events/listen call in the 
init function uses the Closure 
browser events library to register a 
callback on text changes in the input 
field. Making changes to this field 
invokes the render function, caus-
ing the full rendering sequence to 
execute.

The (init) call at the bottom 
of the file will be invoked once the 
browser has loaded all the JavaScript; 
this function will register the event 
listener and execute an initial 
rendering.

Compile this complete Clojure-
Script file the same way you did the 
demo app:

$ bin/cljsc renderer.cljs \
{:optimizations :advanced} > \
renderer.js

Now you should be able to open 
the renderer.html f i le in your 
browser, type more code into the 
input field, and see the real-time 
HTML rendering in action.

  (defn attrs-props [attrs]
   (string/join " "
    (map
     (fn [[k v]]
      (str " " (name k) "=\"" v "\""))
     attrs)))

  (defn closing-tag [tag attrs]
   (str "<" tag (attrs-props attrs)" />"))

  (defn wrapping-tag [tag attrs inner]
   (str "<" tag (attrs-props attrs)">"
      inner
      "</" tag ">"))

  (defn compile-form [form]
   (cond
    (vector? form)
     (let [[tag attrs & body] form]
      (if (seq body)
       (wrapping-tag (name tag) attrs
        (apply str (map compile-form body)))
       (closing-tag (name tag) attrs)))
    (seq? form)
     (apply str (map compile-form form))
    :else
     (str form)))

Figure 5. Simple HTML compiler implementation (renderer.cljs).

  (defn render [& _]
   (let [input-text (.value (dom/getElement "input-text"))
      input-form (reader/read-string input-text)
      output-compiled(compile-form input-form)]
    (dom/setTextContent
     (dom/getElement "output-compiled")         
      output-compiled)
    (set!
     (.innerHTML (dom/getElement "output-rendered")) 
     output-compiled)))

  (defn init []
   (events/listen (dom/getElement "input-text") 
    event-type/KEYUP render)
   (render))

  (init)

Figure 6. Wiring it up. We tie the HTML compiler into the actual webpage 
using a browser event listener implemented by the Google Closure library.

IC-15-06-Funw.indd   100 10/11/11   9:53 AM



ClojureScript: Functional Programming for JavaScript Platforms

NOVEMBER/DECEMBER 2011 101

The ClojureScript 
Compilation Model
We’ve seen that ClojureScript can 
execute a program with Clojure-like 
source code in a JavaScript-based 
browser environment. This execution 
is facilitated by the ClojureScript/ 
Closure compiler tool chain. Let’s look 
at that compilation process and see 
why ClojureScript’s unique approach 
to compilation is essential to the lan-
guage’s practical application.

The ClojureScript compiler imple-
ments the initial phase of compi-
lation. The compiler is written in 
Clojure as a recursive descent parser/
analyzer/emitter. It’s relatively sim-
ple because the Clojure semantics 
that it’s compiling for are simple, and 
because its JavaScript target is itself 
a rich language (as compared to, for 
example, the JVM bytecode that Clo-
jure itself targets).

As an example of this first level of 
ClojureScript compilation, consider 
this simple ClojureScript namespace:

(ns compiler)

(defn add-two [n1 n2]
 (+ n1 n2))

(defn ^:export calc [a b c]
 (let [ab (add-two a b)]
  (add-two ab c)))

We can observe the first stage of 
compilation by explicitly avoiding 
optimization phases:

$ bin/cljsc compiler.cljs \
{:optimizations false \ 
:pretty-print true} > \
compiler.js

This unoptimized compilation 
produces several JavaScript files, 
one of which contains a snippet like 
the one in Figure 7.

The mapping between the name-
space and function definitions in our 
original ClojureScript source is quite 
clear. This straightforward compilation  

of Clojure to JavaScript would be 
useful in itself, but it does have prob-
lems for production applications. In 
particular, if we’re compiling a sub-
stantial application that depends on 
the large Closure and ClojureScript 
libraries, the number and size of the 
resulting JavaScript files will be too 
large for fast delivery to bandwidth-
constrained Web clients.

To address this problem, Clojure-
Script leverages Closure’s sophis-
ticated whole-program JavaScript 
optimizer. The optimization process 
starts when ClojureScript generates 
Closure-compatible JavaScript source 
code. Such code explicitly declares 
its namespace imports and exports 
so that the Closure compiler under-
stands the program’s structure. We 
see such declarations in Figure 7, with 
goog.require('cljs.core') and 
goog.exportSymbol('compiler.
calc', compiler.calc).

The ClojureScript build program 
can then feed the output of the 
ClojureScript compiler for a given 
application, along with the compiled 
ClojureScript core library and the 
Google Closure JavaScript library, 
into the Closure compiler. This com-
piler uses the dependency metadata 
available from the specially for-
matted JavaScript source files to 
build a whole-program dependency 
tree, eliminate all function defini-
tions that aren’t reachable by spe-
cific applications, rewrite variable 
names and eliminate comments and 
whitespace to reduce code size, and 

emit a single file containing all the 
resulting JavaScript.

Executing this multistep com-
pilation process by hand would be 
arduous, but ClojureScript provides a 
simple interface to this Closure tool 
chain. Indeed, we used it earlier for 
our demo apps. To better see how this 
optimizing compiler works, let’s com-
pile our simple test code from earlier:

$ bin/cljsc compiler.cljs \
{:optimizations :advanced} > \
compiler.js

If you examine the compilation 
output in compiler.js, you’ll see 
JavaScript with very short vari-
able names, no comments, and with 
almost all whitespace eliminated. 
It might not even be clear that this 
code corresponds to the original 
application source or the Clojure-
Script library. However, if you search 
this source for "compiler.calc", 
you’ll find the compiled code cor-
responding to our original compiler 
namespace. It will look something 
like this (whitespace re-introduced 
for clarity):

function nc(a,c) {
 return pb.call(f,a,c)
}
function oc(a,c,d) {
 a = nc.call(f,a,c);
 return nc.call(f,a,d)
}
var pc = "compiler.calc".

split(".")

  goog.provide('compiler');
  goog.require('cljs.core');
  compiler.add_two = (function add_two(n1,n2){
   return cljs.core._PLUS_.call(null,n1,n2);
  });
  compiler.calc = (function calc(a,b,c){
   var ab__1977 = compiler.add_two.call(null,a,b);
   return compiler.add_two.call(null,ab__1977,c);
  });
  goog.exportSymbol('compiler.calc', compiler.calc);

Figure 7. Snippet of ClojureScript compiler output.

IC-15-06-Funw.indd   101 10/11/11   9:53 AM



The Functional Web

As you can see, the compiled 
output is semantically similar to the 
nonoptimized output, but variable 
references have been renamed and 
inlined to minimize code size while 
preserving application behavior.

Also note that the compiler.js
fi le is itself only 34 Kbytes. This is 
many times smaller than just the 
ClojureScript core library source 
code size; we achieve this reduc-
tion in code size via the aggressive 
whole-program optimization and 
minifi cation the Closure compiler 
performs.

C lojureScript is a young language 
and ecosystem, but its future as 

a tool for JavaScript platforms is 
promising. JavaScript has massive 
reach, and indeed is now a required 
target for any comprehensive Web 
or mobile application project. As 
the client-side portions of Web and 
mobile applications become more 
sophisticated, ClojureScript is well 
positioned to bring the robustness 
of functional programming and the 
elegance of Clojure to these Java-
Script environments. 

Mark McGranaghan is an engineer at Heroku. 

Contact him at mark@heroku.com.

Selected CS articles and columns 
are also available for free at http://

ComputingNow.computer.org.

www.computer.org/itpro

IC-15-06-Funw.indd   102 10/11/11   9:53 AM


