
JULY/AUGUST 2009	 1089-7801/09/$25.00 © 2009 IEEE	 Published by the IEEE Computer Society� 93

The Functional Web

Build Your Next Web
Application with Erlang
Dave Bryson
Steve Vinoski • Verivue

T he Erlang programming language, togeth-
er with its Open Telecom Platform (OTP)
framework, is renowned for its exceptional

concurrency and fault-tolerance capabilities.
Developers are often initially attracted to Erlang
just so they can try out these features, and ex-
perienced Erlang server application developers
make heavy use of these and other Erlang traits.
Successful Erlang server applications often must
be Web-accessible, even if not initially designed
that way, which means developers must inte-
grate such services into the world of HTTP.

Fortunately, building a Web application in
Erlang isn’t necessarily difficult; it mostly re-
quires a change in thinking. For a small in-
vestment in learning, your Web application can
take advantage of all the exceptional features
Erlang provides to non-Web applications: scal-
ability, fault tolerance, concurrency, relatively
painless distributed system capabilities, and
live system upgrades.

The growing interest in applying Erlang/OTP
to Web services and Web applications is driv-
ing the development of several interesting open
source projects. In this column, we’ll look at
some of the more popular Erlang Web frame-
works and Web servers.

Web Servers
One of the best known Erlang Web servers is
Yaws (yet another Web server; http://yaws.
hyber.org/), written and maintained by long-
time Erlang expert Claes “Klacke” Wikström,
currently of Tail-f Systems. Klacke has con-
tributed significantly to Erlang over the years,
devising and implementing several important
features, including Erlang term storage (ets),
Distributed Erlang, the eprof profiler, the Mnesia
database, the Erlang bit syntax, and more.

Yaws is a general-purpose, open source Web
server that supports a number of common use

cases. At the simple end of the spectrum, a nor-
mal Yaws deployment can serve static files from
disk without requiring any developer code or
extensions. However, Yaws shines when it comes
to serving dynamic content, and getting it to do
that means writing some code. Here’s an exam-
ple of a simple handler that returns “hello from
yaws” with a content type of “text/plain” and a
200 HTTP status code:

out(_Arg) ->
 {content,
 “text/plain”,
 “hello from yaws”}.

Yaws allows out() functions like this one
— normally referred to in Erlang parlance as
out/1, where the “1” denotes the function’s arity
— to appear in several contexts. For example,
developers can place out/1 functions within
<erl>...</erl> tags in an HTML representa-
tion. When serving such a representation, which
it expects to find in a .yaws file, Yaws first in-
vokes each out/1 function and replaces its en-
closing <erl> tags with the function’s return
value. The argument to the out/1 function is an
instance of a Yaws arg record, which encapsu-
lates all information about the incoming HTTP
request, including HTTP headers, the target URI,
the HTTP method invoked by the client, and in-
coming request data (if applicable).

For applications that serve dynamic content
other than HTML, Yaws also lets out/1 func-
tions appear in application modules, or app-
mods. An appmod — a regular Erlang module
that exports an out/1 function — lets an ap-
plication handle requests for target URIs of its
choosing by registering individual appmods
onto base URIs. For example, if a developer
registers an orders module onto the URI path
/orders, Yaws will dispatch any re-

The Functional Web

94 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

quest for any URI starting with
/orders to the orders:out/1 func-
tion for processing.

Yaws also lets developers use app-
mods to integrate whole Erlang ap-
plications into the Web server via its
Yaws applications or yapps function-
ality. An appmod executes within
the context of Yaws, whereas a yapp
encapsulates one or more appmods
into an application separate from
the Yaws application. Using multiple
applications lets you manage them
independently at runtime, which al-
lows for separate deployment and for
application-specific restart strategies
and code upgrades.

Unfortunately, our column space
doesn’t permit a full description of
Yaws, which has gained a good deal
of flexibility and options for Web ser-
vice development over its life span of
seven years and counting. For more

information, please see Steve’s 2008
article “RESTful Services with Er-
lang and Yaws” (www.infoq.com/
articles/vinoski-erlang-rest).

Mochiweb (http://code.google.com/
p/mochiweb) is an open source,
lightweight, and fast HTTP server
developed by Mochi Media to drive
many of their services. It provides a
small and simple API that gives you
complete control over how you han-
dle the HTTP request and response.
Here’s an example of a very simple
application that starts a server on
port 8080 and returns “hello from
mochiweb” with a 200 status code:

start() ->
 mochiweb_http:start(
 [{port,8080},
 {loop,{?MODULE,loop}}]).

loop(Req) ->
 Req:ok({“text/plain”,
 <<”hello from mochiweb”>>}).

Here, the start/0 function starts
the server on port 8080 and tells
Mochiweb to pass each request to
the loop/1 function. The loop/1
function in turn calls the Mochiweb
Req request module’s ok() function,
passing in “text/plain” as the content
type, and “hello from mochiweb” as
the response message. The Req:ok/1
function automatically sets the HTTP
status for the response to 200.

Mochiweb is built around the
OTP framework principles and comes
with a script to generate an applica-
tion structure along with some code
for your new application. Some of
the pregenerated code includes
an Erlang supervisor to monitor
the HTTP server and restart it if
it fails, as well as an initial mod-
ule to handle incoming requests.
Of course, you’re not bound to use
this script or structure, so it’s easy
to embed Mochiweb into exist-
ing applications. If you’re building
a Representational State Transfer
(REST) service and use JavaScript

Object Notation (JSON) as the mes-
sage exchange format, Mochiweb
includes a module for encoding
and decoding Erlang terms into
JSON. Overall, Mochiweb is a fast,
production-ready HTTP server you
can use to quickly Web-enable your
Erlang application.

Finally, Erlang comes with a
built-in HTTP server called Inets
that includes several pluggable
modules you can use to extend the
server. Developers configure mod-
ules via the Inets configuration file,
and each incoming HTTP request
passes through the modules in the
order in which they appear until
a module finally returns an HTTP
response. Inets provides modules
to handle CGI, SSL, user authenti-
cation, dynamic pages, URI alias-
ing, and more. You can also create
your own modules by following the
guidelines in the Inets Web Server
API. Keeping with our running ex-
ample, here’s how you’d implement a
server with Inets to return the mes-
sage “hello from inets:”

start() ->
 % Set up the server
 inets:start(),
 inets:start(
 httpd,
 [{port,8001},
 {server_name,”httpd_test”},
 {bind_address,
 “localhost”},
 {server_root,”.”},
 {document_root,”.”},
 {modules, [?MODULE]}]).

do(_Info) ->
 {proceed,
 [{response,
 {200,
 [<<”hello from inets”>>]}}
]}.

The start/0 function sets up
the server and starts it on port 8001.
The do/1 function is the required
callback you need to implement for

Subscribe to CiSE online at
http://cise.aip.org

and www.computer.org/cise

MEMBERS $47/year
for print and online

The magazine of
computational tools
and methods for
21st century science.

JULY/AUGUST 2009� 95

Build Your Next Web Application with Erlang

the Inets server API. Here, the do/1
function returns a tuple with a 200
status code and the “hello from inets”
response message.

Now that you have a server on
which to deploy, let’s look at some open
source frameworks you can use to de-
velop an Erlang Web application.

Web Frameworks
Erlyweb (http://erlyweb.org) is a
popular open source framework built
around the model view controller
(MVC) pattern. It works with Yaws
and provides many of the features you
need to build a full-blown, database-
driven Web application. You can be
up and running quickly with Erlyweb
using its built-in ability to generate
the application directory structure
along with some initial code for a
controller and view. Like many MVC-
based Web frameworks, you imple-
ment your application’s flow logic in
the controller module and feed the
controller output to Erlyweb’s built-
in template language to help separate
the HTML from the business logic.

By default, Erlyweb will auto-
matically route a request to your ap-
plication using the path elements in
the URL. For example, a request sent
to http://example.com/foo/bar/1/2/3
would make a call to the foo mod-
ule with the function bar and pass
the argument list [1,2,3] to it. You
get all that for free without any con-
figuration. It also provides plenty
of hooks you can implement in the
controller to alter the request and re-
sponse as needed. For example, you
can implement a “before” filter, often
used for authentication.

Erlyweb includes a database-ab-
straction layer (Erlydb) that users of
ActiveRecord, the Ruby on Rails Ob-
ject-Relational Mapping (ORM) layer,
will find familiar. It currently supports
the MySQL and Postgres relational
databases as well as Erlang’s Mnesia
database. Erlydb provides access to
the database via a standard API with
automatically generated functions

such as save, find_first, update,
and more. Erlyweb uses the metadata
from the database along with your
code to automatically map your mod-
els to the underlying database table.
It also provides one-to-many and
many-to-many relationships between
models by simply declaring the rela-
tionships in the source code.

Another open source framework
is Erlang Web (www.erlang-web.org),
developed and maintained by Fran-
cesco Cesarini, a world-class Erlang
expert, and his colleagues at Erlang
Training and Consulting. Like Erly-
web, it also supports Yaws as well as
the native Erlang Inets Web server.

Erlang Web uses an approach to
building Web applications that should

be familiar to users of Java’s Servlet/
Java Server Pages (JSP) technology:
you construct an application using
controllers and templates. The ap-
plication’s data flow is defined in a
controller as an Erlang module with
functions. You can perform preproc
essing on a request by specifying
one or more functions that should
be executed before the targeted ac-
tion. Such preprocessing functions
might include, for example, checking
for authentication and validating in-
coming request data. Erlang Web also
provides a nice dispatcher that lets
you customize request mapping to the
actual controllers via a configuration
file containing regular expressions.

The template engine in Erlang
Web is based on XHTML and the
Erlang xmerl library. It includes a
built-in tag library, which lets you
construct dynamic pages in parts
and reuse chunks of XHTML across
the application. You can also per-

form data validation by defining
data structures in Erlang records
that could also automatically gener-
ate input forms for your application.
For persistent storage, Erlang Web
has a database management system
layer supporting the Mnesia data-
base as well as beta support for the
popular CouchDB, an innovative,
document-oriented database (http://
couchdb.apache.org/).

Webmachine (http://bitbucket.
org/justin/webmachine) takes a very
different and interesting approach
to building RESTful Web applica-
tions using the Mochiweb server. In
Webmachine, you build your appli-
cation around resources and a set of
predefined functions — resource and

function are analogous to controller
and action in Ruby on Rails.

When a request comes into Web-
machine, it automatically flows
through a built-in decision path that
can examine the request to determine
the next processing step. At each step
in the flow, Webmachine provides a
predefined hook — a resource function
you can override to implement your
application’s logic. Each of the pre-
defined resource functions have a sen-
sible default return value that results
in an appropriate HTTP status code, so
you override only the functions your
applications need. For example, when
a request comes into Webmachine, it
automatically checks the predefined
is_authorized function. By default,
the check returns true, and the re-
quest continues via the decision path.
However, if you override the is_au-
thorized function and return any-
thing other than true, Webmachine
will automatically respond with the

The growing interest in applying Erlang/OTP
is driving the development of several
interesting open source projects.

The Functional Web

96 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

401 (unauthorized) HTTP status code.
Another nice feature of Web

machine is its built-in trace facil-
ity. When you enable debugging in
your application, you can follow the
request via a dynamically generated
view you access from a Web browser.
The trace provides a decision graph
showing the request path via your
application. You can further drill
down into the trace to see details on
the specific functions called and the
decision made at that point.

If you prefer an event-driven
approach to building Web applica-
tions, you’ll want to look at Nitrogen
(http://nitrogenproject.com/). Nitrogen
comes with support for Asynchronous
JavaScript and XML (Ajax) and Comet
(long-polling HTTP requests) and pro-
vides built-in “tags” that make it easy
to add Ajax effects and more with as
little as one line of code. It also sup-

ports all the popular Erlang Web serv-
ers: Yaws, Mochiweb, and Inets.

With Nitrogen, each page in your
application corresponds to an Erlang
module using a simple naming con-
vention. For example, a request to
/web/blog/list would map to a
module named web_blog_list.
Within a module, you define a main()
function as the entry point for the re-
quest along with one or more event
functions for processing actions.

A Nitrogen application’s building
blocks are “elements” and “actions.”
An element is nothing more than
an Erlang record you use to build
the pieces of an HTML page, such
as tables, links, div tags, and more.
Behind the scenes, the Nitrogen en-
gine transforms the Erlang records
to HTML. Nitrogen contains a rich
set of elements that cover most com-
mon needs. In addition, you’re free
to create custom elements by simply
defining a new record and module
for the tag.

You can bind an element to an ac-
tion to build dynamic pages and use
an action to capture an interaction
with an element — link click, mouse
over, and so on. Nitrogen wraps the
JavaScript behind an action using
the jQuery library (http://jquery.
com/) and provides many common
popular element effects, such as
toggle, fade, animate, and more. To
handle actions such as sending in-
formation to the server, you simply
bind a page element to an Erlang
function. Nitrogen will handle map-
ping the request to your function us-
ing the power of pattern matching.

F inally, BeepBeep (http://github.
com/davebryson/beepbeep/tree/

master) is a small framework still in
its early developmental stages. It’s de-
signed to provide a “convention-over-
configuration” approach to building
Web applications similar to that of
Ruby on Rails. If you follow the code
structure layout and a few rules when

building your application, BeepBeep
will automatically map URI requests
to your modules and templates. Beep-
Beep is built around the Mochiweb
Web server and provides dynamic
pages using the Django template
language (http://www.djangoproject.
com) from the world of Python.

These Erlang Web servers and
frameworks cover a broad and use-
ful portion of the Web development
spectrum. The fact that Erlang lets
developers express solid solutions
quite compactly means that you
can have a service or application up
and running with these servers and
frameworks in very little time and
with minimal effort. Developers who
make the effort to learn Erlang/OTP
not only find its focus on pragma-
tism refreshing, but they’re also re-
warded with systems that maximize
the benefits of multicore systems and
concurrency, so they scale and per-
form well. The brevity of the code
implementing these systems also
makes them relatively easy to extend
and maintain. Plus, they can exploit
Erlang/OTP’s hot code-loading fea-
tures to stay up and running even as
they’re being upgraded.

As you can see, you have plenty
of choices for building and deploy-
ing your next Web application using
Erlang. Future columns will explore
some of these servers and frame-
works in more detail, starting with
Webmachine, which will receive a
much more thorough treatment in
the next issue.�

Dave Bryson is an experienced Web appli-

cation developer. You can read Bryson’s

blog at http://weblog.miceda.org, follow

his code at http://github.com/davebryson,

and contact him at daveb@miceda.org.

Steve Vinoski is a member of the technical

staff at Verivue in Westford, Mass. He’s a

senior member of the IEEE and a member

of the ACM. You can read Vinoski’s blog

at http://steve.vinoski.net/blog/ and con-

tact him at vinoski@ieee.org.
www.cisco.com

Cisco Systems, Inc. is accepting resumes
for the following position in:

Irvine, CA

Test Engineer
 (Ref#: IRV2)

Build test equipment and test diagnostics for
new products based on manufacturing designs.
Please mail resumes with reference number to
Cisco Systems, Inc., Attn: J51W, 170 W. Tasman
Drive, Mail Stop: SJC 5/1/4, San Jose, CA 95134.
No phone calls please. Must be legally
authorized to work in the U.S. without
sponsorship. EOE.

