
The Functional Web

88 	 Published by the IEEE Computer Society	 1089-7801/10/$26.00 © 2010 IEEE� IEEE INTERNET COMPUTING

L ast year, Debasish Ghosh and Steve Vinoski
gave an overview of the Scala language,
highlighting some of the features of Scala

using the Lift Web framework in their article,
“Scala and Lift — Functional Recipes for the
Web.”1 We pick up where they left off in this
column by taking a deeper dive into Lift, a Web
framework in the vein of Seaside (www.seaside.
st) and WebObjects (http://developer.apple.com/
tools/webobjects).

In contrast to frameworks oriented around
the model-view-controller (MVC) pattern, Lift
abstracts the HTTP request–response cycle
rather than wrapping HTTP concepts in APIs.
This means you put HTML element definition
and action in the same place:

var name = ""
SHtml.text(name, s => name = s)

This example creates an <input type=
"text" value=""/> tag and associates it with
the function that sets the variable name to the
value the user enters, whether submitted via
Ajax or via a normal HTTP GET or POST. The
advantages of Lift’s approach are numerous,
including increased security through randomly
assigned HTML element names, enhanced
maintainability, and unification between Ajax
and normal HTTP.

Here, we show how to build a multiuser, real-
time chat application in Lift and discuss Scala’s
language features that make Lift possible. The
application provides a single chat server that
takes chat messages and redistributes the mes-
sages out to all listeners. But before we present
the code for the chat application, let’s first briefly
discuss Scala’s support for actors and messages.

Actors and Messages
Similar to Erlang, Scala supports the actor
model, an approach to concurrency in which

each actor is an independent entity capable of
sending and receiving messages to and from
other actors and creating new actors. Whereas
actors are baked into Erlang, they’re a library in
Scala. In fact, Lift has its own actor library that
has different, more Web-friendly performance
characteristics than the Scala actor library. An
actor gives a few guarantees that provide a sim-
ple concurrency model: asynchronous message
sending, processing at most one message at a
time, and processing messages in order from the
actor’s mailbox.

Sending a message to an actor is asynchro-
nous: the message-send method returns almost
immediately. A message send places the message
in the target actor’s mailbox. An actor defines a
set of messages that it can handle at the current
time. When the application causes a message to
be placed into the actor’s mailbox, the actor is
scheduled to review its messages. If the actor
can handle at least one message in its mail-
box, it’s scheduled to execute that message and
potentially other messages in its mailbox. Note
that with actors, you don’t need to lock private
variables because you’re guaranteed to execute
code that can access those variables on only one
thread at a time. Because message sending is
asynchronous, it takes a lot of work to deadlock
an actor.

The Chat Application
To follow along with our chat application
instructions, you’ll need to install on your
computer version 2.2.1 of the Maven project
life-cycle management tool (see http://maven.
apache.org) and Java 1.6. The first thing we’ll
do is create a Lift project’s shell:

mvn archetype:generate \
 -DarchetypeGroupId=\
net.liftweb \
 -DarchetypeArtifactId=\

A Chat Application in Lift

David Pollak • Lift Web Framework
Steve Vinoski • Verivue

MAY/JUNE 2010� 89

A Chat Application in Lift

lift-archetype-basic \
 -DarchetypeVersion=2.0-M2

When Maven prompts you, set
the groupId to com.liftcode, the
artifactId to chat, and use the
default for everything else. Once
this command completes, change to
the chat directory and enter the fol-
lowing command:

mvn jetty:run

After this completes (which could
take a while, depending on how
much Maven needs to download),
point your browser to http://local
host:8080, and you’ll find you’ve got
a running application.

Now, let’s add a chat component.
First, create a file named Chat.scala
under the chat directory in the src/
main/scala/com/liftcode/comet
subdirectory. Add the following to
the top of the file:

package com.liftcode.comet
import net.liftweb._
import http._
import actor._
import scala.xml.NodeSeq

Scala supports traits, which define
a contract with the implementing
class, such as Java’s interfaces, as
well as optionally providing imple-
mentation like Ruby’s mix-ins. We
can use that to advantage in the code
for our chat application:

object ChatServer extends
LiftActor with ListenerManager
{
 private var msgs =
 List("Welcome")

 // message handler
 override def highPriority =
 {
 case s: String =>
 msgs ::= s
 updateListeners()
 }

 def createUpdate = msgs
}

The first line defines a singleton
named ChatServer. By using the
mix-in approach, we ensure that the
ChatServer is both a LiftActor and
a ListenerManager. The Listener-
Manager trait we mix into Chat-
Server provides the add/remove
listener functionality and sends
update messages when the actor’s
state changes, thus enabling Chat-
Server to keep track of listeners.

The code example’s second line
defines a private list variable named
msgs, seeded with a “Welcome” mes-
sage. If we receive a String as a
message, we add it to our list of mes-
sages in the highPriority method
and update our listeners. The create
Update method provides the mes-
sages we want to send. This com-
pletes our ChatServer definition.

Next, we define the CometActor,
which represents the chat component
that lives in the user’s browser. Lift
supports “server-push” applications,
also known as long-polling or Comet
applications. A Comet component
in Lift is an actor that responds to
messages and pushes changes out
to any browser pages that might be
viewing the component. Before we
explain how that works, let’s look at
the component:

class Chat extends
 CometActor with CometListener
{
 private var msgs:
 List[String] = Nil

 // what component do we
 // register with?
 def registerWith =
 ChatServer

 // define how to handle
 // messages from the
 // chat server
 override def highPriority =
 {

 case m: List[String] =>
 // set local state
 msgs = m
 // redraw ourselves
 reRender(false)
 }

 def render =
 bind("chat",
 "line" -> lines _,
 "input" -> SHtml.text(
 "",
 s => ChatServer ! s))

 private def lines(
 xml: NodeSeq):
 NodeSeq =
 msgs.reverse.
 flatMap(
 m => bind(
 "chat",
 xml,
 "msg" -> m))
}

The class definition, local state
variable, listener registration, and
message-handling code mirror the
code in the chat server. This class
also belongs in the src/main/
scala/com/liftcode/comet/
Chat.scala file we defined earlier.

Before we discuss how the render-
ing code works, let’s look at the view
code. Here’s the HTML template that
invokes the chat component. Place this
code in the file src/main/webapp/
index.html (replace any contents
that might already be present):

<lift:surround with="default"
 at="content">
 <lift:comet type="Chat">

 <chat:line>
 <chat:msg/>
 </chat:line>

 <lift:form>
 <chat:input/>
 <input type="submit"
 value="chat"/>

The Functional Web

90 		 www.computer.org/internet/� IEEE INTERNET COMPUTING

 </lift:form>
 </lift:comet>
</lift:surround>

The first element, lift:
surround, surrounds this page
with the default template, and the
lift:comet element on the second
line invokes the Comet chat compo-
nent. The lift:comet tag’s children
are passed to the component so that
the component can “bind” the busi-
ness logic to the view. Let’s look at
the binding:

def render =
 bind("chat",
 "line" -> lines _,
 "input" ->
 SHtml.text("",
 s => ChatServer ! s))

We bind the chat:line tag to
the function lines, and we bind the
chat:input tag to an input text ele-
ment, which, when submitted, sends
the String to the ChatServer as
an asynchronous message via the
! operator. In our view, we make
the form an Ajax form using the
<lift:form/> tag.

Finally, let’s look at how the mes-
sage lines are rendered:

private def lines(
 xml: NodeSeq):
 NodeSeq =
 msgs.reverse.
 flatMap(
 m => bind(
 "chat",
 xml,
 "msg" -> m))

We take the list of messages (new-
est to oldest) and reverse the list, so
we display oldest to newest. For each
list element, we bind the message to
the view. So, we’re replacing

<chat:msg/>

with

Hello

for each message.
At this point, you can compile

and run your application again via
the same mvn jetty:run command.
Point multiple browser applications
to http://localhost:8080, and you’ll
see instantly updated chat messages
in all your browsers.

Most importantly, note that you
haven’t implemented any HTTP
plumbing. Your controller code is
simply the following function:

s => ChatServer ! s

You can have many such control-
lers on a Web page. In fact, you can
have multiple Comet components on
a single page.

Discussion
Lift’s Comet implementation uses a
single HTTP connection to poll for
changes to an arbitrary number
of components on the page. Each
component has a version number.
The long poll includes the version
number and the component’s glob-
ally unique identifier (GUID). On
the server side, a listener is attached
to all the GUIDs listed in the long-
poll requests. If any component has
a higher version number, or the
version number increases during
the long-poll period, the listener
sends the deltas — a JavaScript set
describing the change from each
version — to the client. The browser
applies the deltas and sets the cli-
ent’s version number to the change
set’s highest version number. Lift
integrates long polling with ses-
sion management so that, if a sec-
ond request comes into the same
URL during a long poll, the long
poll is terminated to avoid connec-
tion starvation (some browsers have
a default maximum of two HTTP
connections per named server). Lift
also supports Domain Name System
(DNS) wild-carded servers for long-

poll requests such that each tab in
the browser can do long polling
against a different DNS server. This
avoids connection starvation issues.
Lift dynamically detects the con-
tainer in which the servlet is run-
ning. On Jetty versions 6 and 7 and
Glassfish version 3.0, Lift uses the
platform’s continuations implemen-
tation to avoid using a thread dur-
ing the long poll. Lift’s JavaScript
can sit on top of the jQuery and
YUI JavaScript frameworks. The
actual polling code includes back-
off on connection failures and other
graceful ways of dealing with tran-
sient connection failures.

Scala Features
Let’s take a tour of the Scala lan-
guage features that we used for our
example.

•	 Singletons. With built-in single-
tons, we have a unified object
model in which everything is an
object, yet we can pass a single-
ton as a parameter to a method or
return a singleton, such as with
the registerWith method.

•	 Pattern matching. We matched
incoming messages against pat-
terns and took appropriate action.
Additionally, your code can exe
cute pattern matching inline
or convert it to a function and
return it from a method. We did
the latter when we returned the
pattern-matching function from
the highPriority methods.

•	 Type inferencing. Our code is very
concise because we didn’t have to
declare many types. We declared
types when the compiler couldn’t
figure them out. Places where you
generally must declare types in
Scala are places you should doc-
ument them, or places for which
you’d ordinarily write a test in a
dynamic language such as Ruby.

•	 Traits. We’re able to compose
complex behavior into our classes
by mixing traits together. Traits

MAY/JUNE 2010� 91

A Chat Application in Lift

have the benefits of multiple
inheritance without the diamond
problem. This highlights the fact
that Scala is an advanced OO
language as well as an advanced
functional language.

•	 Immutable data types. We passed
the string list as a message
to the listeners from the chat
server. Just as String is immu-
table in Java, List is immutable
in Scala. That means it’s safe to
share references and access the
same references from multiple
threads without synchronization.
Scala has many immutable types
including immutable collections
and XML in its standard library.

•	 Function passing. In Scala, func-
tions are objects. We were able to
pass the function

	 s => ChatServer ! s

	 to the SHtml.text method. The
method associates the function
with the GUID assigned to the
HTML element.

Together, these features supply
significant utility for frameworks
such as Lift. Our Lift example reveals
the productivity it affords developers,
even for an application as involved as
a long-polling chat server.�

Reference
1.	 D. Ghosh and S. Vinoski, “Scala and Lift

— Functional Recipes for the Web,” IEEE

Internet Computing, vol. 13, no. 3, 2009,

pp. 88–92.

David Pollak has been writing commercial

PURPOSE: The IEEE Computer Society is the world’s largest association
of computing professionals and is the leading provider of technical
information in the field.
MEMBERSHIP: Members receive the monthly magazine Computer,
discounts, and opportunities to serve (all activities are led by volunteer
members). Membership is open to all IEEE members, affiliate society
members, and others interested in the computer field.
COMPUTER SOCIETY WEB SITE: www.computer.org
OMBUDSMAN: Email help@computer.org.

Next Board Meeting: 11 June 2010, Denver, CO, USA

EXECUTIVE COMMITTEE
President: James D. Isaak*
President-Elect: Sorel Reisman;* Past President: Susan K. (Kathy) Land,
CSDP;* VP, Standards Activities: Roger U. Fujii (1st VP);* Secretary:
Jeffrey M. Voas (2nd VP);* VP, Educational Activities: Elizabeth L. Burd;*
VP, Member & Geographic Activities: Sattupathu V. Sankaran;† VP,
Publications: David Alan Grier;* VP, Professional Activities: James
W. Moore;* VP, Technical & Conference Activities: John W. Walz;*
Treasurer: Frank E. Ferrante;* 2010–2011 IEEE Division V Director:
Michael R. Williams;† 2009–2010 IEEE Division VIII Director: Stephen
L. Diamond;† 2010 IEEE Division VIII Director-Elect: Susan K. (Kathy)
Land, CSDP;* Computer Editor in Chief: Carl K. Chang†

*voting member of the Board of Governors †nonvoting member of the Board of Governors

BOARD OF GOVERNORS
Term Expiring 2010: Piere Bourque; André Ivanov; Phillip A. Laplante;
Itaru Mimura; Jon G. Rokne; Christina M. Schober; Ann E.K. Sobel
Term Expiring 2011: Elisa Bertino, George V. Cybenko, Ann DeMarle,
David S. Ebert, David A. Grier, Hironori Kasahara, Steven L. Tanimoto
Term Expiring 2012: Elizabeth L. Burd, Thomas M. Conte, Frank E.
Ferrante, Jean-Luc Gaudiot, Luis Kun, James W. Moore, John W. Walz

EXECUTIVE STAFF
Executive Director: Angela R. Burgess; Associate Executive Director;
Director, Governance: Anne Marie Kelly; Director, Finance &
Accounting: John Miller; Director, Information Technology & Services:
Carl Scott; Director, Membership Development: Violet S. Doan;
Director, Products & Services: Evan Butterfield; Director, Sales &
Marketing: Dick Price

COMPUTER SOCIETY OFFICES
Washington, D.C.: 2001 L St., Ste. 700, Washington, D.C. 20036
Phone: +1 202 371 0101; Fax: +1 202 728 9614; Email: hq.ofc@computer.org
Los Alamitos: 10662 Los Vaqueros Circle, Los Alamitos, CA 90720-1314
Phone: +1 714 821 8380; Email: help@computer.org
Membership & Publication Orders:
Phone: +1 800 272 6657; Fax: +1 714 821 4641; Email: help@computer.org
Asia/Pacific: Watanabe Building, 1-4-2 Minami-Aoyama, Minato-ku, Tokyo
107-0062, Japan

Phone: +81 3 3408 3118 • Fax: +81 3 3408 3553
Email: tokyo.ofc@computer.org

IEEE OFFICERS
President: Pedro A. Ray; President-Elect: Moshe Kam; Past President:
John R. Vig; Secretary: David G. Green; Treasurer: Peter W. Staecker;
President, Standards Association Board of Governors: ; W. Charlston
Adams; VP, Educational Activities: Tariq S. Durrani; VP, Membership
& Geographic Activities: Barry L. Shoop; VP, Publication Services &
Products: Jon G. Rokne; VP, Technical Activities: Roger D. Pollard; IEEE
Division V Director: Michael R. Williams; IEEE Division VIII Director:
Stephen L. Diamond; President, IEEE-USA: Evelyn H. Hirt

revised 20 Jan. 2010

software since 1977. He wrote the first

real-time spreadsheet and the world’s

highest-performance spreadsheet engine.

Since 1996, Pollak has been using and

devising Web development tools. He’s

also developed numerous commercial

projects in Ruby on Rails. In 2007, Pol-

lak founded the Lift Web Framework.

He’s also the author of Beginning Scala

(Apress, 2009).

Steve Vinoski is a member of the technical

staff at Verivue in Westford, Mass. He’s

a senior member of IEEE and a member

of the ACM. You can read Vinoski’s blog

at http://steve.vinoski.net/blog and reach

him at vinoski@ieee.org.

Selected CS articles and columns are
also available for free at http://

ComputingNow.computer.org.

