
24	 This article has been peer-reviewed.� Computing in Science & Engineering

M o d e r n P r o g r a m m i n g
L a n g u a g e s

Developers use the open source Erlang programming language in domains such as
telecommunications, database systems, and the Web due to its superior support for
concurrency and reliability. Erlang applications comprise numerous processes—lightweight
user-space threads—that communicate via message passing. This article focuses on Erlang’s
concurrency support and details an example 1D Poisson solver program.

Concurrency and Message
Passing in Erlang

E rlang is a concurrent and distributed
functional programming language for
building practical systems requiring
high levels of distribution, concur-

rency, fault tolerance, availability, and uptime.
Developers use it in various domains—including
finance, database systems, social networking sys-
tems, and the Web—but it was originally con-
ceived for use in telecommunications applications.
In the world of telecom, equipment uptime and
reliability has always been a significant concern.
It’s not unusual for production telecom equipment
to have allowable downtime of only 3 to 4 minutes
per year, with governmental fines levied for any
outages exceeding those limits.

In the 1980s, the Ericsson Computer Science
Laboratory searched for ways to make the process
of developing software for telecom equipment re-
sult in more reliable systems that were easier and
less expensive to build and maintain. Under the
direction of Bjarne Däcker, Joe Armstrong started
experimenting in the mid-1980s with a wide vari-
ety of programming languages, including Small-
talk, ML, Ada, Prolog, and Ericsson’s proprietary
Programming Language for Exchanges (PLEX),
leading him to build a series of prototypes of what

would eventually become Erlang. Mike Williams
and Robert Virding later joined Armstrong in
helping to further develop the prototypes and
evolve the language. Armstrong wrote his initial
prototypes of the Erlang virtual machine (VM)
in Prolog, but in the early 1990s, Williams re-
wrote the VM in C.

Erlang began to see commercial use in the
early 1990s, and by the mid-1990s, Ericsson had
begun to use it on several large-scale commercial
projects, such as the successful AXD301 ATM
switch. By 1996, Ericsson had also built the Open
Telecom Platform (OTP) framework,1 a layer of
libraries and frameworks that enhanced Erlang’s
capabilities for use in soft real-time, highly con-
current, highly reliable systems. Ericsson released
Erlang/OTP as open source in 1998, and the
Erlang community has been growing ever since.

Today, the Ericsson Erlang/OTP development
team, led by Kenneth Lundin, regularly produces
high-quality releases of the Erlang system with
the help of the open source community. You can
download their releases of Erlang from www.
erlang.org. Members of the Ericsson team also serve
as the keepers of the language, deciding which
features and extensions are added or deprecated.
They develop Erlang using GitHub (https://
github.com/erlang/otp), accepting modifications
and patches from the Erlang community through
GitHub’s source code management facilities.

Here, I explain Erlang’s history and features,
focusing on its concurrency support, and detail an

Steve Vinoski
Basho Technologies

1521-9615/12/$31.00 © 2012 IEEE

Copublished by the IEEE CS and the AIP

CISE-14-6-Vinoski.indd 24 10/5/12 2:08 PM

November/December 2012 � 25

example concurrent 1D Poisson solver program
written in Erlang.

A Tour of Erlang
Erlang is a straightforward language with com-
paratively few syntactical elements. Let’s review
those elements.

Syntax
Because early Erlang VM prototypes were built
using Prolog, Erlang’s syntax (as I’ll show in later
examples) bears a strong resemblance to it. Some
developers whose programming experience is
limited to Java, C++, or C initially have difficulty
with Erlang’s syntax because it differs consider-
ably from what they’re used to, but most become
comfortable with the syntax after just the first few
days of learning to read and write it.

Types
Erlang has just a few types as follows. When
bound to a value, Erlang variables gain the type
of the value being bound; the language doesn’t
require explicit type declarations for variables.

Integers and floating-point numbers. Erlang inte-
gers are of arbitrary size and can represent any
whole number. Floating-point numbers are repre-
sented using the IEEE 754-1985 double-precision
standard.

Atoms, known as non-numeric constants. An atom
usually starts with a lowercase letter, but can
also be specified by putting single quotes around
the atom name. So, for example, both exit and
'EXIT' are atoms.

Lists and tuples are both collections of Erlang terms,
where a term is an instance of any Erlang data type.
Lists are delimited by square brackets, whereas
tuples are delimited by curly braces. Each type
can be heterogeneous, storing elements of differ-
ing types within the same collection. Tuples are
typically used for fixed-size collections, while lists
are better for variable-sized collections because—
as I’ll show in some example code later—Erlang
provides special syntax and functions for easily
creating lists of arbitrary length, for adding to or
removing from the head of a list, and for accessing
the heads and tails of lists.

Erlang doesn’t have a specific string type; a string
is just a list of characters. Strings can be de-
fined using either double quotes or square
bracket s. The const ruct s “string” and

[$s,$t,$r,$i,$n,$g]—where the “$c” syntax
represents the ASCII value of the character c fol-
lowing the dollar sign—are equivalent.

Records are collections with named fields. Records
are implemented under the covers as tuples. How-
ever, unlike tuples, record field values can be ac-
cessed and set by name.

Binaries are basically memory buffers. Fundamen-
tally, they’re contiguous blocks of raw bytes, but
they allow memory to be set and accessed as inte-
gers, strings, floating-point numbers, characters,
and arbitrary-length bit fields. Binaries are useful
for representing network protocol headers, for ex-
ample, because header structures tend to contain
fields of less than a byte in size. Erlang’s syntax
for handling binaries is something to behold,
requiring just a single line to extract numerous
fields of a binary, where other languages might
require several dozen lines to retrieve the value
of each field separately. For example, the vari-
ous fields comprising a TCP segment’s header as
well as its accompanying payload can be obtained
from a binary variable in a single operation2
as follows:

<<SourcePort:16, DestinationPort:16,

 SequenceNumber:32, AckNumber:32,

 DataOffset:4, _Reserved:4,

 Flags:8, WindowSize:16,

 Checksum:16, UrgentPointer:16,

 Payload/binary>> = BinaryVar.

Here, we assume BinaryVar stores a TCP seg-
ment. The << and >> tokens delimit the definition
of a binary on the left-hand side of the equal sign.
Within the binary, each header field is declared
with its bit length in standard order of appearance
within a TCP segment. The assignment operator,
as explained in more detail later, asserts a match of
its left- and right-hand sides, and at runtime such
matching causes the value on the right-hand side
to be deconstructed into all the variables on the
left-hand side. Following the header fields is the
Payload variable, which is itself a binary, allow-
ing it to capture all remaining bytes of the seg-
ment following the header fields, regardless of
total segment length.

Anonymous functions, or funs, are functions without
names. Anonymous functions can be passed as ar-
guments to other functions, returned from func-
tions, and stored in collections, as can references
to named functions.

CISE-14-6-Vinoski.indd 25 10/5/12 2:08 PM

26� Computing in Science & Engineering

Process identifiers, or pids, serve as handles to
Erlang’s lightweight processes. A process holding a
pid of another process can use it to send messages
to the other process, monitor it, control it, or re-
quest runtime information about it.

Sequential Flow Control
Sequential flow control constructs in Erlang are
similarly sparse. For example, unlike most lan-
guages, there are no “for” or “while” loops.
Instead, looping is achieved through recur-
sive function invocation. Erlang supports tail
calls, where recursion occurs not by pushing
new frames onto a stack—which could cause the
application to run out of stack space—but
rather by jumping from the function tail back to
its start.

In addition to recursion, the use of pattern
matching for sequential flow control is prevalent in
Erlang programming. Erlang’s pattern matching
allows for the deconstruction of data structures,
the assignment of multiple variables, and—
when combined with Erlang’s “case,” “if,” and
“receive” statements and multiclause functions—
the choice of code paths based on values. Treating
assignment as matching in programming lan-
guages is unusual, given that most languages treat
assignment as a way to replace a variable’s current
value. However, doing so in Erlang is impossible,
because Erlang variables are single-assignment—
once assigned, they can’t be modified. Here’s how
assignment works:

Variable = some_value(),

Variable = foo.

On the first line, we call the function some_
value(). Let’s assume it returns the atom foo. In
this assignment, Variable has no value yet—it’s
unbound—so the Erlang runtime binds the atom
value foo to it. The second line, rather than reas-
signing Variable, asserts its equality to the atom
foo, similar to an algebraic equation. If Variable
had a value other than foo, the second assignment
statement would throw a badmatch exception at
runtime.

Compared to mainstream languages such as
Java, single-assignment variables are unusual, but
they help make reasoning about program flow eas-
ier, especially in highly concurrent systems. One
thing to consider is that Erlang doesn’t support
global variables; all variables are defined within
functions. In other programming languages,
global variables are often sources of problems in
multithreaded programs.

Here’s a brief example showing some of Erlang’s
sequential programming features:

-module(list_ops).

-export([add/1]).

add(List) when is_list(List) ->

 add(List, 0).

add([Head|Tail], TotalSoFar) ->

 NewTotal = TotalSoFar + Head,

 add(Tail, NewTotal);

add([], Total) ->

 Total.

The first line defines the module’s name, list_
ops. On the second line, we export the module’s
functions that we want accessible outside the
module—in this case, a single function, add/1,
where the integer 1 refers to the function’s arity
or the number of arguments it expects. The other
seven lines of code define three functions: the ex-
ported add/1 function and two add/2 functions
that are local to the module. On the first of these
lines, we define the add/1 function head, includ-
ing its List argument between the parentheses.

All variables in Erlang begin with an upper-
case letter. A guard, which is an optional clause
that, in this case, constrains the List argument
to having the list type, follows the argument list.
The arrow “->” separates the head of the function
from its body. In the function body, we call the
function add/2. Calling a function in a different
module requires prefixing the function name with
its module name, separated by a colon character,
whereas calling a local function requires no pre-
fix. The return value of the add/1 function is the
value of its final statement, so whatever add/2
returns will be the return value of add/1 as well.

The first clause of add/2 uses pattern matching
in its argument list. The first argument is speci-
fied as a list of at least one element named Head,
followed by a possibly empty list named Tail.
The vertical bar character separates the list’s head
from its tail. The add/2 function adds Head to
TotalSoFar to create NewTotal, then invokes it-
self recursively, passing Tail as the first argument
and NewTotal as the second argument.

The second clause of add/2, which also uses
pattern matching in its argument list, differs from
the first clause in an important way: because its
first argument is specified as the empty list, it pro-
vides a way for the recursion to end. When the list
passed to add/2 is empty, the function’s second
clause is chosen via pattern matching, and it sim-
ply returns its Total argument.

CISE-14-6-Vinoski.indd 26 10/5/12 2:08 PM

November/December 2012 � 27

Developers with functional programming
experience will recognize our example list_
ops:add/1 and add/2 functions as an instance
of a fold, in which a single value is computed
by applying a function to all elements of a list.
Erlang provides fold functionality in the form
of the foldl/3 and foldr/3 functions, both
found in the standard Erlang lists module. The
three function calls shown here produce the
same result:

List = [1,2,3,4,5],

15 = list_ops:add(List),

15 = �lists:foldl(fun erlang:'+'/2,

0, List),

15 = lists:sum(List).

The lists:foldl/3 function takes three ar-
guments: an arity 2 function to apply to each list
element and accumulate the result, the accumula-
tor’s initial value, and the list on which to operate.
This example shows one way of passing a function
as an argument to another function: the function
we pass as the first argument to lists:foldl/3
is Erlang’s built-in addition operator. In Erlang,
all function names are atoms. The construct '+'
therefore represents the atom that names the ad-
dition function; as with all of Erlang’s built-in
functions, it lives within the erlang module. The
fun keyword marks the construct as a function
reference.

On the final line of the example, we call
lists:sum/1—another standard function that’s
less general than a fold, but equivalent in behav-
ior to the list_ops:add/1 function. All three
statements use pattern-matching assignment to
assert that each function call returns the expected
value 15.

Erlang Concurrency
Other differences aside, what sets Erlang apart
from most other languages is its support for con-
currency. Erlang’s concurrency model is built
around the idea of lightweight processes available
as part of the language, rather than being added
on through extra optional libraries. Erlang’s pro-
cesses are lightweight enough that a single VM in-
stance can execute millions of them concurrently.

Erlang processes communicate via message
passing, rather than through shared memory. Just
as with immutable variables, message passing lets
developers more easily write, read, and reason
about concurrent programs. Each process has a
mailbox, or message queue, through which it re-
ceives messages. Erlang guarantees that messages

sent from one process to another arrive in the
order sent.

When it comes to executing processes, the
Erlang VM’s implementation is similar to an op-
erating system (OS) in that it contains schedul-
ers that map Erlang’s processes onto underlying
OS threads. By default, the Erlang VM starts
one scheduler per CPU core, making Erlang
an excellent fit for today’s multicore systems. A
scheduler tracks both the runtime execution and
I/O of each Erlang process, allowing it to run
for either a maximum number of operations or
until it encounters blocking I/O, at which time
it schedules that process out and runs another
one that’s ready. Should a particular scheduler
run out of work, it can steal work from other
schedulers.

Consider an example consisting of two Erlang
processes. One process sends the atom ping to
the other process, which in turn sends the atom
pong back to the first process. First, the code for
the ping process:

ping(0, _PongPid) ->

 ok;

ping(N, PongPid) ->

 PongPid ! ping,

 receive

 pong ->

 ping(N-1, PongPid)

 end.

The ping/2 function takes two arguments:
a counter N and a process ID PongPid identify-
ing the pong process. In the second clause, the
function first uses the “!” operator to send the
message ping to PongPid. The function then
calls receive, a built-in function that blocks
waiting for one or more specified messages.
The only message receive waits for here is the
atom pong; when that arrives, ping calls itself
recursively, decrementing its N counter. Once N
reaches zero, the first clause of the ping function
matches, and the recursion ends, returning the
atom ok.

The code for the pong process is similar:

pong(0, _PingPid) ->

 ok;

pong(N, PingPid) ->

 receive

 ping ->

 PingPid ! pong,

 pong(N-1, PingPid)

 end.

CISE-14-6-Vinoski.indd 27 10/5/12 2:08 PM

28� Computing in Science & Engineering

The primary difference here is that the pong
process acts as a server, first receiving and then
sending. It goes directly into its receive call,
waiting for a ping message. Once that arrives,
it sends the message pong to PingPid, and then
decrements its counter and invokes itself recur-
sively. The recursion ends when the counter
hits zero.

Starting the ping and pong processes is
straightforward:

start(N) ->

 PingPid = self(),

 PongPid = spawn(fun() ->

 pong(N, PingPid)

 end),

 ping(N, PongPid).

The start/1 function takes a single argu-
ment, N, the recursion counter. It sets the Ping-
Pid variable to self(), a built-in function that
returns the process ID of the calling process.
Thus, the process executing start/1 is also
the ping process. To start the pong process, the
start/1 function calls the spawn built-in func-
tion, telling it what to execute by passing it an
anonymous function that invokes the pong/2
function. Finally, start/1 calls ping/2 to kick
off the ping-pong message exchange. Once N
instances of both the ping and pong messages
are exchanged, the start/1 function ends, as
does the PingPid process. The PongPid pro-
cess exits once the pong/2 function completes
its recursions.

This example shows the simplicity with which
developers can write concurrent applications us-
ing Erlang. Idiomatic Erlang code makes use of
many processes; applications are typically com-
posed of hundreds or even many thousands of
communicating processes. The ease with which
Erlang allows new processes to be started and
coordinated is notable, especially given the
lack of mutexes, locks, condition variables, and
other special constructs and keywords that tend
to litter multithreaded code written in other
languages.

Thinking of applications in terms of concur-
rently active processes passing messages to each
other can take some getting used to, because it’s
more akin to writing a distributed system than a
sequential single-threaded program. Interestingly,
Erlang also provides exceptional support for dis-
tributed programming: the code to pass mes-
sages between processes is the same regardless
of the location of the processes. When processes

are distributed, the Erlang runtime transparently
sends any messages passed between them over the
network.

Erlang’s support for reliable systems is a by-
product of its strong concurrency and distribu-
tion capabilities. Distribution is important for
reliable systems, which employ multiple boxes
that must communicate with and monitor each
other so that an operational box can pick up the
work of any that become unavailable due to hard-
ware or software faults. Concurrency is also im-
portant for reliable systems; because Erlang can
create and destroy processes so cheaply, it en-
courages programmers to follow a “let it crash”
philosophy with their code—whereby if a process
executing a function encounters an unhandled
error, it crashes. This unique approach to error
handling lets programmers write only the code
they expect to work for the non-error case and
leave any cleanup for error cases to the applica-
tion’s supervision scaffolding.

In OTP applications, processes are divided into
supervisors and workers, with supervisors moni-
toring the workers. If a worker dies, a supervisor
can either start a replacement worker or relay the
problem to another higher-level supervisor to
let it take corrective action. This approach saves
Erlang developers from having to write the nu-
merous lines of exception-handling code typically
found in other languages, and less code means
smaller applications with fewer bugs.

The Erlang runtime also uses processes to al-
low for live system upgrades. The runtime lets
two versions of a module be present in memory
simultaneously. Processes currently executing
functions within the old version are allowed to
finish, while all new calls to the module are di-
rected to the new version, including fully quali-
fied recursive calls. The runtime also executes
any custom upgrade functions that an upgrade
package specifies, allowing for the modification
or update of any state variables passing from a
function in the old module to the new one via a
recursive call.

A 1D Poisson Solver
The design of my Erlang solver for the 1D Poisson
equation is similar to that of the original Python
solver discussed in the guest editors’ introduction.
As Figure 1 shows, my solution employs several
concurrent Erlang processes acting as solvers for
individual Poisson lattice sites. These processes
cooperate by exchanging numeric values with ad-
jacent processes as needed to calculate a solution
for each lattice site.

CISE-14-6-Vinoski.indd 28 10/5/12 2:08 PM

November/December 2012 � 29

First, the Erlang solver declares the module
name along with the functions it exports:

-module(poisson).

%% API

-export([poisson1d/0]).

%% Internal exports

-export([phi/4]).

The first -export directive defines the mod-
ule’s API, which is the list of functions it exports
for other modules to use. Here, the module ex-
ports just a single function, poisson1d/0. The
second -export line semantically behaves just
like the first, but by convention I separate it from
the first to indicate that the function it exports
isn’t intended to be part of the module API. Rather,
the function it specifies, phi/4, is exported for
use in an Erlang spawn call, where it’s referenced
only as an atom and not as a function. Ordinar-
ily, the Erlang compiler optimizes away any local
function that appears unused, but exporting the
function prevents that.

The first part of the poisson1d API function
defines several constant values:

poisson1d() ->

 NSites = 16,

 H = 0.1,

 NIters = 10,

 Collector = self(),

As noted earlier, in Erlang all variables begin
with an uppercase letter. The NSites, H, and
NIters variables correspond directly to their
counterparts in the original Python solver. Just as
in the Python code, NSites is the number of sites
on the Poisson lattice, H is the lattice spacing, and
NIters is the number of solver iterations. The
Collector variable is initialized from the Erlang
self() function, which returns the current pro-
cess’s identifier. The job of the Collector is to
eventually collect all the solution results that the
concurrent solver processes produce.

Next, we create a list of concurrent solvers:

Sentinel = spawn(fun sentinel/0),

Pids = lists:foldl(fun(I,

[Prev|_]=Acc) ->

Rho = case NSites div 2 of

 I -> 1;

 _ -> 0

 end,

Args = [Collector, NIters, Prev,

 {I, H, Rho}],

Pid = spawn(?MODULE, phi, Args),

Prev ! {set_next, Pid},

[Pid | Acc]

end, [Sentinel], lists:seq(0,

NSites-1)),

Here, we first spawn a process to execute the
sentinel/0 function, then store its process ID in
the Sentinel variable. I’ll explain the implemen-
tation of the sentinel/0 function later.

The rest of this part of the code creates one
solver process for each lattice site. It does this by
folding a function over a list of integers ranging
from zero to one less than the NSites constant.
Each integer serves as an identifier for a lattice
site. The lists:foldl/3 function operates by
passing each integer in turn as the first argument
to the fold function. The second argument to the
fold function is the fold accumulator, which essen-
tially stores the fold’s state as it advances through
the list from one integer to the next.

The fold function performs several activities
for each lattice site. First, it trivially calculates Rho
for each site. For the site whose integer identifier
corresponds to half the number of total sites, Rho
is 1; otherwise it’s 0. The case statement handles
the calculation of Rho. Next, the fold function
spawns a new solver process, to which it passes the
following arguments:

•	 the Collector variable, indicating the process
ID of the solution-collector process;

•	 the NIters variable, indicating the number of
iterations each solver must perform;

•	 the Prev variable, indicating the process ID of
the solver process created in the previous fold
iteration; and

•	 a tuple consisting of the integer I for this solver,
the constant value H, and the Rho value for this
solver.

Figure 1. Each process in the lattice is aware of its
previous and next processes. The processes at the
ends of the lattice refer to the Sentinel process,
which polymorphically handles lattice boundary
conditions.

Phi (0) Phi (1)

Previous

Sentinel

Next

Phi (N – 2)
…

Phi(N) = 0Phi(–1) = 0

Phi (N – 1)

CISE-14-6-Vinoski.indd 29 10/5/12 2:08 PM

30� Computing in Science & Engineering

Notice the declaration of the Prev variable: it’s
the head of the accumulator list, which is the sec-
ond argument to the fold function. The Erlang
syntax [Prev|_] represents a list where Prev is the
list’s head and the “don’t care” variable, represented
as an underscore, is its tail. The full syntax of the
second argument, [Prev|_]=Acc, is a way of as-
serting that the Acc argument is a list. The equal
sign here indicates equivalence, not assignment.
The construct asserts that Acc is a list comprising
at least one element, Prev, while also naming the
list’s first element for convenient use within the
function body. This argument-matching construct
involving the definition of multiple variables is
quite common in idiomatic Erlang code.

As in the original Python solution, my Erlang
approach requires each solver to know about its
adjacent solvers. Within the fold function, we in-
form each Prev solver process—the one created
in the fold function’s previous iteration—of the
process ID of its next solver process by sending
the Prev process a message:

Prev ! {set_next, Pid},

The message this statement sends is a tuple
composed of the atom set_next and the Pid
variable, where Pid is the pid for the newly cre-
ated solver. Later, I’ll explain the details of how
the receiving Prev process acts on this message.

The final line of the fold function builds a new
value for the fold accumulator by prepending the
Pid process ID to the current accumulator’s head:

[Pid | Acc].

This is Erlang’s special syntax for list construc-
tion, and it’s highly efficient, because the runtime
just stores the new value in the list’s head and links
the tail to it. This new list serves as the return value
of the fold function, which lists:fold/3 car-
ries forward as the accumulator’s new value for the
next iteration of the fold. When the fold completes,
lists:fold/3 returns the accumulator’s final
value as its return value. Interestingly, prepending
new pids to the accumulator means the accumula-
tor is built in reverse order, with lattice site 0 toward
the right end of the list and lattice site NSites-1 at
the left end. I address the list order later in the code.

The second argument to lists:fold/3 is the
accumulator’s initial value, which for this appli-
cation is a single-element list consisting of the
Sentinel’s process ID. The Sentinel is a spe-
cial process that handles the lattice boundaries. It
responds to the same messages as regular solvers,

but responds with special replies suited for a solver
at either end of the lattice. Regular solvers there-
fore don’t need special logic to deal with missing
neighbors if they’re at either end of the lattice.
Instead, they just send the same messages to their
neighbors, the same as any other solver, and the
Sentinel responds appropriately.

The final argument to lists:fold/3 is a se-
quence of integers ranging from 0 to NSites-1,
generated by the lists:seq/2 function. These
integers identify each solver process’s lattice site,
and are used primarily when the application’s final
results are printed to the screen.

Upon completion, the lists:fold/3 function
returns a list of all the pids of the solvers it created,
with each solver except the leftmost one knowing
the process ID of its next neighbor. The next line
of code in our solution adds the final process link,
informing the list’s leftmost process that its left
neighbor process is the Sentinel:

hd(Pids) ! {set_next, Sentinel},

The hd/1 function returns the head of a list;
here, it lets us isolate the leftmost process in the
Pids list so that we can send it a message.

Before explaining the rest of the poisson1d/0
function, which is concerned with collecting the
results of the solver processes, it’s instructive to
examine the code’s details that each concurrent
solver executes. Each solver process executes the
phi/4 function shown next:

phi(Collector, NIters, Prev, Consts) ->

 receive

 {set_next, Next} ->

 phi(NIters, Collector, Prev,

 Next, Consts, 0.0)

end.

Here, the receive statement declares that
the solver expects to get a message of the form
{set_next, Next}, where Next is a variable
bound to the second element of the received
two-tuple. When it receives such a message, the
function executes the body associated with that
message, which in this case simply invokes a sepa-
rate phi/6 function. Because the Prev solver is
passed as a function argument to phi/4 and the
Next solver is received in the set_next mes-
sage tuple, each solver is aware of both its right
and left neighbors by the time it enters the phi/6
function.

The phi/6 function consists of two separate
clauses. The first clause handles the special case

CISE-14-6-Vinoski.indd 30 10/5/12 2:08 PM

November/December 2012 � 31

of the solver iteration count dropping to 0, while
the second clause is a recursive function that cal-
culates the Poisson solution:

phi(0, Collector, _, _, {I, _, _},

Phi) ->

 Collector ! {self(), I, Phi};

phi(NIters, Collector, Prev, Next,

{_, H, Rho}=Consts, Phi) ->

 PhiPrev = adjacent_phi(Prev, Phi),

 PhiNext = adjacent_phi(Next, Phi),

 NewPhi = (PhiPrev + PhiNext)/2

 + H/2 * Rho,

 phi(NIters - 1, Collector, Prev,

 Next, Consts, NewPhi).

The first clause simply sends the calculation
result Phi together with the lattice site number
I and the solver’s pid (retrieved via the self()
call) back to the Collector process. The sec-
ond clause, though, is more involved. It invokes
the adjacent_phi/2 function twice, first to
send its current Phi value to the Prev solver,
which is its neighbor to the right, and request
that solver’s current Phi value, and then to
do the same with the Next solver, its neighbor
to the left. Once it obtains new values from each
of its neighbors, it uses them together with H
and Rho to calculate the NewPhi value for itself.
Finally, it invokes itself recursively, passing its
decremented iteration counter and its NewPhi
value. Only when the counter reaches zero will
the first clause of phi/6 match, thus ending the
recursion.

The adjacent_phi/2 function is responsible
for communicating with a solver’s neighbors. It
takes an adjacent solver’s pid and the calling solv-
er’s current Phi value as arguments.

adjacent_phi(Adjacent, Phi) ->

 Adjacent ! {put, Phi, self()},

 receive

 {put, AdjacentPhi, Adjacent} ->

 AdjacentPhi

 end.

It first sends a message to the Adjacent solver
in a three-tuple consisting of the atom put, the
value of Phi, and its own pid obtained via the
self() call. The receiving solver uses the in-
cluded pid to know where to send its reply, which
is a message of the same three-tuple form. Upon
receiving the reply, the adjacent_phi/2 func-
tion returns the AdjacentPhi value sent by
its neighbor.

Because the Sentinel process described earlier is
a special form of a solver, it handles the same messages
as other solver processes, but does so differently.

sentinel() ->

 receive

 {set_next, _} ->

 ok;

 {put, _, Pid} ->

 Pid ! {put, 0.0, self()};

 stop ->

 exit(normal)

 end,

 sentinel().

The Sentinel handles the set_next message
by simply ignoring the pid included in the mes-
sage (via the special underscore “don’t care” vari-
able). This is because, unlike a regular solver, the
Sentinel has no need to initiate communication
with any neighbors, so it need not store any pids
for previous- or next-solver processes. To handle
a put message, the Sentinel throws away the in-
cluded phi value and always sends back 0.0 for its
own phi value. Finally, the Sentinel also handles
a stop message, which allows the poisson1d/0
function to tell the Sentinel to exit once all the
solvers have completed their calculations. Figure 1
shows the arrangement of the solver processes and
the sentinel process.

The sentinel/0 function effectively lets the
Sentinel process implement polymorphism,
thereby simplifying all solver processes. By han-
dling the same messages as regular solver pro-
cesses, it lets solvers be unconcerned with the
boundary conditions existing at either end of the
Poisson lattice. Whether communicating with a
regular solver process or the Sentinel process
as its neighbor, a solver sends the same form of
messages and receives the same form of replies.

The final portion of my Erlang 1D Poisson
program, which is at the end of the poisson1d/0
function, is responsible for collecting solutions
from each solver.

lists:foreach(

 fun(Pid) ->

 receive

 {Pid, I, Phi} ->

 io:format("~2w ~.10f~n",

 [I, Phi])

 end

 end, tl(lists:reverse(Pids))),

Sentinel ! stop,

ok.

CISE-14-6-Vinoski.indd 31 10/5/12 2:08 PM

32� Computing in Science & Engineering

To collect each solver’s solutions, we walk the
list of solver processes using lists:foreach/2.
It takes two arguments—a function and a list—
and simply calls its function argument for each
list element from left to right. The list we pass
to lists:foreach/2 is a modified copy of
the list of the solver pids we created earlier via
lists:foldl/3. Recall that the original pro-
cess list contains the Sentinel process, which
we don’t want to include in our collection process.
Also recall that the process list is in reverse order
because of how we built the accumulator during
the fold. To fix these issues, we reverse the list’s
order by passing it to lists:reverse/1, which
results in the Sentinel process being at the front
of the list. To skip it, we use the tl/1 function to
obtain just the list’s tail. The result of these two
function calls is a list of solver pids ordered from
lattice points 0 to NSites-1.

For each solver process, our solution collec-
tor waits to receive a message from that specific
process indicating its lattice point number I and
its calculated value Phi. The presence of the Pid
variable within the three-tuple message that the
receive call waits for means that the collector
won’t proceed until it receives a matching message
from that specific process. Selective receive calls
of this nature are extremely useful within Erlang
applications, allowing different parts of the code
to be concerned with receiving only the messages
it knows about and understands, even if messages
intended for some other parts of the code are al-
ready sitting unreceived in the process message
queue. The selective receive scans the mes
sage queue to find a type matching the pattern
or patterns specified in the receive call, skip-
ping any messages that don’t match. If it scans
the whole queue without finding a matching
message, receive will then block awaiting
the arrival of a matching message. By default,
receive blocks forever, but it can take an op-
tional after clause to specify a maximum num-
ber of milliseconds to wait.

Using the selective receive capability also helps
order our Erlang solution’s printed output. If you
run the original Python solution, you’re likely to
see it print garbled output to the screen due to
thread preemption. But because the Erlang solu-
tion collector waits in order for the result mes-
sage from each solver process, its printed output
is never garbled as a result of overlapped process
execution.

The collector effectively serializes the results
of all the solvers by taking advantage of Erlang’s
selective receive capabilities. Even if the collector

receives a message from a solver out of order, that
message will sit in the collector’s message queue
until the collector executes a receive specifically
matching it, and only then will the Erlang run-
time system extract that message from the queue
and deliver it to the collector process. To imple-
ment something similar, the Python program
would have to join each solver thread in order of
lattice site identifier and then print the solution
within the main thread instead of within each
solver thread. Erlang’s selective receive makes our
collector approach simple and elegant.

Interestingly, our Erlang program contains no
condition variables, mutex locks, synchroniza-
tion blocks, or other thread-related constructs
required in mainstream languages such as Java
and C++.

Performance
Writing high-performing systems in Erlang is
possible, but it depends on the application type.
This article shows an Erlang Poisson 1D solver,
but that choice isn’t intended to imply that Erlang
is an excellent programming language for num-
ber crunching; the requirement to show a Poisson
1D solver solution was simply part of the call for
articles for this special issue. Solving such numer-
ical problems would be better done in a general-
purpose language such as Fortran or C, or perhaps
in a math-oriented domain-specific language.

Erlang is well suited for applications requir-
ing coordination, integration, and control, es-
pecially in systems that perform a significant
amount of I/O such as Web and database servers.
Using the Poisson 1D problem as a way to com-
pare Erlang’s performance to C or Fortran would
be fruitless.

Rather than examining raw performance fig-
ures, it’s more instructive to examine how the
Erlang lightweight process model fares on multi-
core systems. As explained earlier, by default the
Erlang runtime executes one scheduler per CPU
core. However, it also provides command-line op-
tions to enable only a particular number of sched-
ulers, as well as to turn off its virtual machine’s
symmetric multiprocessing (SMP) capabilities
altogether.

To illustrate Erlang’s ability to make use of
multicore systems, I made the following changes
to the Poisson 1D program to make it easier to use
as a test program:

•	 allowed the number of lattice sites and number
of iterations to be specified from the command
line;

CISE-14-6-Vinoski.indd 32 10/5/12 2:08 PM

November/December 2012 � 33

•	 disabled all program output, to avoid measuring
the time required to print results for numerous
lattice sites to the screen; and

•	 avoided the use of the selective receive capability.

The reason I avoided selective receive for these
experiments is worth noting. First, the results
collector in the program originally used selec-
tive receive not only to order the solution results,
but also to pedagogically explain a useful feature
of Erlang messaging. The original program also
processed only 16 lattice sites; however, for a much
greater number of sites, selective receive can be
expensive because the Erlang runtime must scan
through a potentially large number of messages
in the collector’s message queue to find a match.
The collector is essentially a contended resource
to which all site processes must send their results,
so to better handle larger numbers of lattice sites,
I modified the collector to avoid using selective
receive and to instead receive all lattice site result
messages in whatever order they arrive and sort
the entire results set once all site messages have
arrived.

I then ran the program with four different
numbers of lattice sites—8,000, 16,000, 32,000,
and 64,000—and ran each for 10,000 iterations.
Lattice spacing for each run was 0.1, just as in the
original program. I measured elapsed time and
CPU usage for each different lattice size, first with
Erlang’s SMP capabilities turned off, and then
with varying numbers of schedulers. I tested these
combinations using Erlang/OTP release R15B01
on an otherwise idle Ubuntu 12.04 system with
16 Gbytes of RAM and a 3.4-GHz Intel i7-2600K
processor, which is a quad-core CPU but due to
hyperthreading appears to Erlang as an eight-core
system. I thus capped my testing at a maximum of
eight Erlang schedulers.

Figures 2 and 3 show the results of this test-
ing. Figure 2 shows the elapsed time of each pro-
gram run, and Figure 3 focuses on the CPU usage
for each run. Not surprisingly, running the solver
with SMP disabled or with just a single scheduler
thread uses only one CPU core and takes longer
than any of the other trials where multiple sched-
ulers were used. Interestingly, running the solver
in a single scheduler thread takes longer than
running the same program with Erlang SMP
disabled; this is because the SMP version of the
Erlang runtime is larger and more complicated
because it must handle multiple OS threads with
appropriate locking, condition variables, and other
typical, low-level concurrency constructs. For
two or more schedulers, elapsed execution time

generally decreased as the number of schedulers
increased, regardless of the number of lattice sites.

Figure 3 shows that CPU usage increased lin-
early for smaller numbers of schedulers, but in-
creased somewhat more shallowly for higher
numbers of schedulers. The graph also shows
CPU usage to be independent of the number of
lattice sites measured.

Figure 2. Program execution time as a function of the number of
Erlang schedulers. As the number of Erlang schedulers increases,
more CPU cores are used, thus reducing elapsed time for the revised
Poisson 1D solver program independent of the number of Poisson
lattice sites. (SMP stands for symmetric multiprocessing.)

El
ap

se
d

tim
e

(s
ec

on
ds

)

0

900

Erlang schedulers

No SMP 21 43 765 8

100

200

300

400

500

600

700

800 8,000
32,000

16,000
64,000

Number of lattice sites:

Figure 3. System CPU usage as a function of the number of Erlang
schedulers. As the number of Erlang schedulers increases, the CPU
usage of the revised Poisson 1D solver program increases fairly linearly,
independent of the number of Erlang processes serving as Poisson
lattice sites.

C
PU

 u
sa

ge
 p

er
ce

nt
ag

e
(8

 c
or

es
)

0

700

Erlang schedulers

No SMP 21 43 765 8

100

200

300

400

500

600 8,000
32,000

16,000
64,000

Number of lattice sites:

CISE-14-6-Vinoski.indd 33 10/5/12 2:08 PM

34� Computing in Science & Engineering

O verall, these trials show that Erlang
lets applications easily make excel-
lent use of multicore systems. No-
tably, the code used for all test runs

was identical; no code modifications or tuning
were required to work with the varying numbers
of Erlang schedulers.

The Erlang development team at Ericsson
works constantly to ensure that each new re-
lease of Erlang takes as much advantage of
the underlying OS and hardware concurrency
capabilities as possible. Team members often
have access to advanced multicore machines
that they use to measure Erlang, reduce or
eliminate any concurrency-related bottle-
necks, and tune their code so that it continues
to perform well as CPU core counts continue
to increase.

The 1D Poisson solver shows the beauty, power,
and simplicity of the Erlang concurrency model,
but there’s much more to Erlang/OTP than what
this article has explored. Erlang/OTP comes
with an extensive set of standard libraries and

frameworks, and you can find many additional
open source libraries and tools written in
Erlang on GitHub and other sites. It also comes
with several databases, including mnesia, its dis-
tributed transactional database. The runtime
includes an extensive tracing system that lets de-
velopers peer into their running applications to
see what messages its processes are sending and
receiving, and what functions are being called
along with the arguments and return values of
those functions. The tracing feature is an in-
valuable debugging aid, and its overhead is low
enough that it can be used on live production
systems.

The source code for Erlang/OTP is freely
available at www.erlang.org, and you can find doc-
umentation and learning materials there as well.
Several excellent Erlang books are available,2–5
and the Learn You Some Erlang for Great Good !
website (http://learnyousomeerlang.com) pro-
vides extensive tutorials for the language and the
standard OTP frameworks.�

References
1.	 OTP Design Principles User’s Guide, version 5.9.1, Erics-

son AB, 1 Apr. 2012; www.erlang.org/doc/design_

principles/users_guide.html.

2.	 F. Cesarini and S. Thompson, Erlang Programming,

O’Reilly Media, 2009.

3.	 J. Armstrong, Programming Erlang: Software for a

Concurrent World, Pragmatic Bookshelf, 2007.

4.	 M. Logan, E. Merritt, and R. Carlsson, Erlang and OTP

in Action, Manning Publications, 2010.

5.	 S. St. Laurent, Introducing Erlang, O’Reilly Media,

2012.

Steve Vinoski is an architect at Basho Technologies.
His work has focused on distributed systems and
middleware systems for more than 20 years, in-
cluding distributed object systems, service-oriented
systems, and RESTful Web services. Vinoski has a
BS in electrical engineering from Christian Brothers
University in Memphis, Tennessee. He writes “The
Functional Web” column for IEEE Internet Comput-
ing, in which he explores the use of functional pro-
gramming languages for Web development. He’s a
senior member of IEEE and a member of the ACM.
Contact him at vinoski@ieee.org, read his blog at
http://steve.vinoski.net, and find him on Twitter at @
stevevinoski.

Selected articles and columns from IEEE Computer
Society publications are also available for free at

http://ComputingNow.computer.org.

CISE-14-6-Vinoski.indd 34 10/5/12 2:08 PM

