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M o d e r n  P r o g r a m m i n g 
L a n g u a g e s

Developers use the open source Erlang programming language in domains such as 
telecommunications, database systems, and the Web due to its superior support for 
concurrency and reliability. Erlang applications comprise numerous processes—lightweight 
user-space threads—that communicate via message passing. This article focuses on Erlang’s 
concurrency support and details an example 1D Poisson solver program.

Concurrency and Message  
Passing in Erlang

E rlang is a concurrent and distributed 
functional programming language for 
building practical systems requiring 
high levels of distribution, concur-

rency, fault tolerance, availability, and uptime. 
Developers use it in various domains—including 
finance, database systems, social networking sys-
tems, and the Web—but it was originally con-
ceived for use in telecommunications applications. 
In the world of telecom, equipment uptime and 
reliability has always been a significant concern. 
It’s not unusual for production telecom equipment 
to have allowable downtime of only 3 to 4 minutes 
per year, with governmental fines levied for any 
outages exceeding those limits.

In the 1980s, the Ericsson Computer Science 
Laboratory searched for ways to make the process 
of developing software for telecom equipment re-
sult in more reliable systems that were easier and 
less expensive to build and maintain. Under the 
direction of Bjarne Däcker, Joe Armstrong started 
experimenting in the mid-1980s with a wide vari-
ety of programming languages, including Small-
talk, ML, Ada, Prolog, and Ericsson’s proprietary 
Programming Language for Exchanges (PLEX), 
leading him to build a series of prototypes of what 

would eventually become Erlang. Mike Williams 
and Robert Virding later joined Armstrong in 
helping to further develop the prototypes and 
evolve the language. Armstrong wrote his initial 
prototypes of the Erlang virtual machine (VM)  
in Prolog, but in the early 1990s, Williams re-
wrote the VM in C.

Erlang began to see commercial use in the 
early 1990s, and by the mid-1990s, Ericsson had 
begun to use it on several large-scale commercial 
projects, such as the successful AXD301 ATM 
switch. By 1996, Ericsson had also built the Open 
Telecom Platform (OTP) framework,1 a layer of 
libraries and frameworks that enhanced Erlang’s 
capabilities for use in soft real-time, highly con-
current, highly reliable systems. Ericsson released 
Erlang/OTP as open source in 1998, and the  
Erlang community has been growing ever since.

Today, the Ericsson Erlang/OTP development 
team, led by Kenneth Lundin, regularly produces 
high-quality releases of the Erlang system with 
the help of the open source community. You can 
download their releases of Erlang from www. 
erlang.org. Members of the Ericsson team also serve 
as the keepers of the language, deciding which 
features and extensions are added or deprecated. 
They develop Erlang using GitHub (https://
github.com/erlang/otp), accepting modifications 
and patches from the Erlang community through 
GitHub’s source code management facilities.

Here, I explain Erlang’s history and features, 
focusing on its concurrency support, and detail an 
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example concurrent 1D Poisson solver program 
written in Erlang.

A Tour of Erlang
Erlang is a straightforward language with com-
paratively few syntactical elements. Let’s review 
those elements.

Syntax
Because early Erlang VM prototypes were built 
using Prolog, Erlang’s syntax (as I’ll show in later 
examples) bears a strong resemblance to it. Some 
developers whose programming experience is 
limited to Java, C++, or C initially have difficulty 
with Erlang’s syntax because it differs consider-
ably from what they’re used to, but most become 
comfortable with the syntax after just the first few 
days of learning to read and write it.

Types
Erlang has just a few types as follows. When 
bound to a value, Erlang variables gain the type 
of the value being bound; the language doesn’t  
require explicit type declarations for variables.

Integers and floating-point numbers. Erlang inte-
gers are of arbitrary size and can represent any 
whole number. Floating-point numbers are repre-
sented using the IEEE 754-1985 double-precision 
standard.

Atoms, known as non-numeric constants. An atom 
usually starts with a lowercase letter, but can 
also be specified by putting single quotes around 
the atom name. So, for example, both exit and 
'EXIT' are atoms.

Lists and tuples are both collections of Erlang terms, 
where a term is an instance of any Erlang data type. 
Lists are delimited by square brackets, whereas 
tuples are delimited by curly braces. Each type 
can be heterogeneous, storing elements of differ-
ing types within the same collection. Tuples are 
typically used for fixed-size collections, while lists 
are better for variable-sized collections because—
as I’ll show in some example code later—Erlang 
provides special syntax and functions for easily 
creating lists of arbitrary length, for adding to or 
removing from the head of a list, and for accessing 
the heads and tails of lists.

Erlang doesn’t have a specific string type; a string 
is just a list of characters. Strings can be de-
fined using either double quotes or square 
bracket s.  The const ruct s “string” and 

[$s,$t,$r,$i,$n,$g]—where the “$c” syntax 
represents the ASCII value of the character c fol-
lowing the dollar sign—are equivalent.

Records are collections with named fields. Records 
are implemented under the covers as tuples. How-
ever, unlike tuples, record field values can be ac-
cessed and set by name.

Binaries are basically memory buffers. Fundamen-
tally, they’re contiguous blocks of raw bytes, but 
they allow memory to be set and accessed as inte-
gers, strings, floating-point numbers, characters, 
and arbitrary-length bit fields. Binaries are useful 
for representing network protocol headers, for ex-
ample, because header structures tend to contain 
fields of less than a byte in size. Erlang’s syntax 
for handling binaries is something to behold, 
requiring just a single line to extract numerous 
fields of a binary, where other languages might 
require several dozen lines to retrieve the value 
of each field separately. For example, the vari-
ous fields comprising a TCP segment’s header as 
well as its accompanying payload can be obtained 
from a binary variable in a single operation2  
as follows:

<<SourcePort:16, DestinationPort:16,

     SequenceNumber:32, AckNumber:32,

     DataOffset:4, _Reserved:4,  

       Flags:8, WindowSize:16,

     Checksum:16, UrgentPointer:16,  

       Payload/binary>> = BinaryVar.

Here, we assume BinaryVar stores a TCP seg-
ment. The << and >> tokens delimit the definition 
of a binary on the left-hand side of the equal sign. 
Within the binary, each header field is declared 
with its bit length in standard order of appearance 
within a TCP segment. The assignment operator, 
as explained in more detail later, asserts a match of 
its left- and right-hand sides, and at runtime such 
matching causes the value on the right-hand side 
to be deconstructed into all the variables on the 
left-hand side. Following the header fields is the 
Payload variable, which is itself a binary, allow-
ing it to capture all remaining bytes of the seg-
ment following the header fields, regardless of 
total segment length.

Anonymous functions, or funs, are functions without 
names. Anonymous functions can be passed as ar-
guments to other functions, returned from func-
tions, and stored in collections, as can references 
to named functions.
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Process identifiers, or pids, serve as handles to  
Erlang’s lightweight processes. A process holding a 
pid of another process can use it to send messages 
to the other process, monitor it, control it, or re-
quest runtime information about it.

Sequential Flow Control
Sequential flow control constructs in Erlang are 
similarly sparse. For example, unlike most lan-
guages, there are no “for” or “while” loops. 
Instead, looping is achieved through recur-
sive function invocation. Erlang supports tail 
calls, where recursion occurs not by pushing 
new frames onto a stack—which could cause the  
application to run out of stack space—but  
rather by jumping from the function tail back to  
its start.

In addition to recursion, the use of pattern 
matching for sequential flow control is prevalent in 
Erlang programming. Erlang’s pattern matching 
allows for the deconstruction of data structures, 
the assignment of multiple variables, and—
when combined with Erlang’s “case,” “if,” and  
“receive” statements and multiclause functions—
the choice of code paths based on values. Treating 
assignment as matching in programming lan-
guages is unusual, given that most languages treat 
assignment as a way to replace a variable’s current 
value. However, doing so in Erlang is impossible, 
because Erlang variables are single-assignment—
once assigned, they can’t be modified. Here’s how 
assignment works:

Variable = some_value(),

Variable = foo.

On the first line, we call the function some_
value(). Let’s assume it returns the atom foo. In 
this assignment, Variable has no value yet—it’s 
unbound—so the Erlang runtime binds the atom 
value foo to it. The second line, rather than reas-
signing Variable, asserts its equality to the atom 
foo, similar to an algebraic equation. If Variable 
had a value other than foo, the second assignment 
statement would throw a badmatch exception at 
runtime.

Compared to mainstream languages such as 
Java, single-assignment variables are unusual, but 
they help make reasoning about program flow eas-
ier, especially in highly concurrent systems. One 
thing to consider is that Erlang doesn’t support 
global variables; all variables are defined within 
functions. In other programming languages, 
global variables are often sources of problems in 
multithreaded programs.

Here’s a brief example showing some of Erlang’s 
sequential programming features:

-module(list_ops).

-export([add/1]).

add(List) when is_list(List) ->

    add(List, 0).

add([Head|Tail], TotalSoFar) ->

    NewTotal = TotalSoFar + Head,

    add(Tail, NewTotal);

add([], Total) ->

    Total.

The first line defines the module’s name, list_
ops. On the second line, we export the module’s 
functions that we want accessible outside the 
module—in this case, a single function, add/1, 
where the integer 1 refers to the function’s arity 
or the number of arguments it expects. The other 
seven lines of code define three functions: the ex-
ported add/1 function and two add/2 functions 
that are local to the module. On the first of these 
lines, we define the add/1 function head, includ-
ing its List argument between the parentheses.

All variables in Erlang begin with an upper-
case letter. A guard, which is an optional clause 
that, in this case, constrains the List argument 
to having the list type, follows the argument list. 
The arrow “->” separates the head of the function 
from its body. In the function body, we call the 
function add/2. Calling a function in a different 
module requires prefixing the function name with 
its module name, separated by a colon character, 
whereas calling a local function requires no pre-
fix. The return value of the add/1 function is the  
value of its final statement, so whatever add/2  
returns will be the return value of add/1 as well.

The first clause of add/2 uses pattern matching 
in its argument list. The first argument is speci-
fied as a list of at least one element named Head, 
followed by a possibly empty list named Tail. 
The vertical bar character separates the list’s head 
from its tail. The add/2 function adds Head to 
TotalSoFar to create NewTotal, then invokes it-
self recursively, passing Tail as the first argument 
and NewTotal as the second argument. 

The second clause of add/2, which also uses 
pattern matching in its argument list, differs from 
the first clause in an important way: because its 
first argument is specified as the empty list, it pro-
vides a way for the recursion to end. When the list 
passed to add/2 is empty, the function’s second 
clause is chosen via pattern matching, and it sim-
ply returns its Total argument.
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Developers with functional programming 
experience will recognize our example list_
ops:add/1 and add/2 functions as an instance 
of a fold, in which a single value is computed 
by applying a function to all elements of a list.  
Erlang provides fold functionality in the form  
of the foldl/3 and foldr/3 functions, both 
found in the standard Erlang lists module. The 
three function calls shown here produce the 
same result:

List = [1,2,3,4,5],

15 = list_ops:add(List),

15 = �lists:foldl(fun erlang:'+'/2,  

0, List),

15 = lists:sum(List).

The lists:foldl/3 function takes three ar-
guments: an arity 2 function to apply to each list 
element and accumulate the result, the accumula-
tor’s initial value, and the list on which to operate. 
This example shows one way of passing a function 
as an argument to another function: the function 
we pass as the first argument to lists:foldl/3 
is Erlang’s built-in addition operator. In Erlang, 
all function names are atoms. The construct '+' 
therefore represents the atom that names the ad-
dition function; as with all of Erlang’s built-in 
functions, it lives within the erlang module. The 
fun keyword marks the construct as a function 
reference.

On the final line of the example, we call 
lists:sum/1—another standard function that’s 
less general than a fold, but equivalent in behav-
ior to the list_ops:add/1 function. All three 
statements use pattern-matching assignment to 
assert that each function call returns the expected  
value 15.

Erlang Concurrency
Other differences aside, what sets Erlang apart 
from most other languages is its support for con-
currency. Erlang’s concurrency model is built 
around the idea of lightweight processes available 
as part of the language, rather than being added 
on through extra optional libraries. Erlang’s pro-
cesses are lightweight enough that a single VM in-
stance can execute millions of them concurrently.

Erlang processes communicate via message 
passing, rather than through shared memory. Just 
as with immutable variables, message passing lets 
developers more easily write, read, and reason 
about concurrent programs. Each process has a 
mailbox, or message queue, through which it re-
ceives messages. Erlang guarantees that messages 

sent from one process to another arrive in the  
order sent.

When it comes to executing processes, the  
Erlang VM’s implementation is similar to an op-
erating system (OS) in that it contains schedul-
ers that map Erlang’s processes onto underlying 
OS threads. By default, the Erlang VM starts 
one scheduler per CPU core, making Erlang 
an excellent fit for today’s multicore systems. A 
scheduler tracks both the runtime execution and 
I/O of each Erlang process, allowing it to run 
for either a maximum number of operations or 
until it encounters blocking I/O, at which time 
it schedules that process out and runs another 
one that’s ready. Should a particular scheduler 
run out of work, it can steal work from other 
schedulers.

Consider an example consisting of two Erlang 
processes. One process sends the atom ping to 
the other process, which in turn sends the atom 
pong back to the first process. First, the code for 
the ping process:

ping(0, _PongPid) ->

        ok;

ping(N, PongPid) ->

         PongPid ! ping,

         receive

                pong ->

                    ping(N-1, PongPid)

         end.

The ping/2 function takes two arguments: 
a counter N and a process ID PongPid identify-
ing the pong process. In the second clause, the 
function first uses the “!” operator to send the 
message ping to PongPid. The function then 
calls receive, a built-in function that blocks 
waiting for one or more specified messages. 
The only message receive waits for here is the 
atom pong; when that arrives, ping calls itself 
recursively, decrementing its N counter. Once N 
reaches zero, the first clause of the ping function 
matches, and the recursion ends, returning the  
atom ok.

The code for the pong process is similar:

pong(0, _PingPid) ->

          ok;

pong(N, PingPid) ->

          receive       

                ping ->

                    PingPid ! pong,

                    pong(N-1, PingPid)

        end.
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The primary difference here is that the pong 
process acts as a server, first receiving and then 
sending. It goes directly into its receive call, 
waiting for a ping message. Once that arrives, 
it sends the message pong to PingPid, and then 
decrements its counter and invokes itself recur-
sively. The recursion ends when the counter  
hits zero.

Starting the ping and pong processes is 
straightforward:

start(N) ->

      PingPid = self(),

      PongPid = spawn(fun() ->

                      pong(N, PingPid)

                  end),

      ping(N, PongPid).

The start/1 function takes a single argu-
ment, N, the recursion counter. It sets the Ping-
Pid variable to self(), a built-in function that 
returns the process ID of the calling process. 
Thus, the process executing start/1 is also 
the ping process. To start the pong process, the 
start/1 function calls the spawn built-in func-
tion, telling it what to execute by passing it an 
anonymous function that invokes the pong/2 
function. Finally, start/1 calls ping/2 to kick 
off the ping-pong message exchange. Once N 
instances of both the ping and pong messages 
are exchanged, the start/1 function ends, as 
does the PingPid process. The PongPid pro-
cess exits once the pong/2 function completes 
its recursions.

This example shows the simplicity with which 
developers can write concurrent applications us-
ing Erlang. Idiomatic Erlang code makes use of 
many processes; applications are typically com-
posed of hundreds or even many thousands of 
communicating processes. The ease with which 
Erlang allows new processes to be started and 
coordinated is notable, especially given the 
lack of mutexes, locks, condition variables, and 
other special constructs and keywords that tend 
to litter multithreaded code written in other 
languages. 

Thinking of applications in terms of concur-
rently active processes passing messages to each 
other can take some getting used to, because it’s 
more akin to writing a distributed system than a 
sequential single-threaded program. Interestingly,  
Erlang also provides exceptional support for dis-
tributed programming: the code to pass mes-
sages between processes is the same regardless 
of the location of the processes. When processes 

are distributed, the Erlang runtime transparently 
sends any messages passed between them over the 
network.

Erlang’s support for reliable systems is a by-
product of its strong concurrency and distribu-
tion capabilities. Distribution is important for 
reliable systems, which employ multiple boxes 
that must communicate with and monitor each 
other so that an operational box can pick up the 
work of any that become unavailable due to hard-
ware or software faults. Concurrency is also im-
portant for reliable systems; because Erlang can 
create and destroy processes so cheaply, it en-
courages programmers to follow a “let it crash” 
philosophy with their code—whereby if a process 
executing a function encounters an unhandled 
error, it crashes. This unique approach to error 
handling lets programmers write only the code 
they expect to work for the non-error case and 
leave any cleanup for error cases to the applica-
tion’s supervision scaffolding.

In OTP applications, processes are divided into 
supervisors and workers, with supervisors moni-
toring the workers. If a worker dies, a supervisor 
can either start a replacement worker or relay the 
problem to another higher-level supervisor to 
let it take corrective action. This approach saves 
Erlang developers from having to write the nu-
merous lines of exception-handling code typically 
found in other languages, and less code means 
smaller applications with fewer bugs.

The Erlang runtime also uses processes to al-
low for live system upgrades. The runtime lets 
two versions of a module be present in memory 
simultaneously. Processes currently executing 
functions within the old version are allowed to 
finish, while all new calls to the module are di-
rected to the new version, including fully quali-
fied recursive calls. The runtime also executes 
any custom upgrade functions that an upgrade 
package specifies, allowing for the modification 
or update of any state variables passing from a 
function in the old module to the new one via a  
recursive call.

A 1D Poisson Solver
The design of my Erlang solver for the 1D Poisson 
equation is similar to that of the original Python 
solver discussed in the guest editors’ introduction. 
As Figure 1 shows, my solution employs several 
concurrent Erlang processes acting as solvers for 
individual Poisson lattice sites. These processes 
cooperate by exchanging numeric values with ad-
jacent processes as needed to calculate a solution 
for each lattice site.
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First, the Erlang solver declares the module 
name along with the functions it exports:

-module(poisson).

%% API

-export([poisson1d/0]).

%% Internal exports

-export([phi/4]).

The first -export directive defines the mod-
ule’s API, which is the list of functions it exports 
for other modules to use. Here, the module ex-
ports just a single function, poisson1d/0. The 
second -export line semantically behaves just 
like the first, but by convention I separate it from 
the first to indicate that the function it exports 
isn’t intended to be part of the module API. Rather, 
the function it specifies, phi/4, is exported for 
use in an Erlang spawn call, where it’s referenced 
only as an atom and not as a function. Ordinar-
ily, the Erlang compiler optimizes away any local 
function that appears unused, but exporting the 
function prevents that.

The first part of the poisson1d API function 
defines several constant values:

poisson1d() ->

    NSites = 16,

    H = 0.1,

    NIters = 10,

    Collector = self(),

As noted earlier, in Erlang all variables begin 
with an uppercase letter. The NSites, H, and  
NIters variables correspond directly to their 
counterparts in the original Python solver. Just as 
in the Python code, NSites is the number of sites 
on the Poisson lattice, H is the lattice spacing, and 
NIters is the number of solver iterations. The 
Collector variable is initialized from the Erlang 
self() function, which returns the current pro-
cess’s identifier. The job of the Collector is to 
eventually collect all the solution results that the 
concurrent solver processes produce.

Next, we create a list of concurrent solvers:

Sentinel = spawn(fun sentinel/0),

Pids = lists:foldl(fun(I,  

[Prev|_]=Acc) ->

Rho = case NSites div 2 of

                         I -> 1;

                       _ -> 0

              end,

Args = [Collector, NIters, Prev,

                  {I, H, Rho}],

Pid = spawn(?MODULE, phi, Args),

Prev ! {set_next, Pid},

[Pid | Acc]

end, [Sentinel], lists:seq(0, 

NSites-1)),

Here, we first spawn a process to execute the 
sentinel/0 function, then store its process ID in 
the Sentinel variable. I’ll explain the implemen-
tation of the sentinel/0 function later.

The rest of this part of the code creates one 
solver process for each lattice site. It does this by 
folding a function over a list of integers ranging 
from zero to one less than the NSites constant. 
Each integer serves as an identifier for a lattice 
site. The lists:foldl/3 function operates by 
passing each integer in turn as the first argument 
to the fold function. The second argument to the 
fold function is the fold accumulator, which essen-
tially stores the fold’s state as it advances through 
the list from one integer to the next.

The fold function performs several activities 
for each lattice site. First, it trivially calculates Rho 
for each site. For the site whose integer identifier 
corresponds to half the number of total sites, Rho 
is 1; otherwise it’s 0. The case statement handles 
the calculation of Rho. Next, the fold function 
spawns a new solver process, to which it passes the 
following arguments:

•	 the Collector variable, indicating the process 
ID of the solution-collector process;

•	 the NIters variable, indicating the number of 
iterations each solver must perform;

•	 the Prev variable, indicating the process ID of 
the solver process created in the previous fold 
iteration; and

•	 a tuple consisting of the integer I for this solver, 
the constant value H, and the Rho value for this 
solver.

Figure 1. Each process in the lattice is aware of its 
previous and next processes. The processes at the 
ends of the lattice refer to the Sentinel process, 
which polymorphically handles lattice boundary 
conditions.

Phi (0) Phi (1)

Previous

Sentinel

Next

Phi (N – 2)
…

Phi(N) = 0Phi(–1) = 0

Phi (N – 1)
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Notice the declaration of the Prev variable: it’s 
the head of the accumulator list, which is the sec-
ond argument to the fold function. The Erlang 
syntax [Prev|_] represents a list where Prev is the 
list’s head and the “don’t care” variable, represented 
as an underscore, is its tail. The full syntax of the 
second argument, [Prev|_]=Acc, is a way of as-
serting that the Acc argument is a list. The equal 
sign here indicates equivalence, not assignment. 
The construct asserts that Acc is a list comprising 
at least one element, Prev, while also naming the 
list’s first element for convenient use within the 
function body. This argument-matching construct 
involving the definition of multiple variables is 
quite common in idiomatic Erlang code.

As in the original Python solution, my Erlang 
approach requires each solver to know about its 
adjacent solvers. Within the fold function, we in-
form each Prev solver process—the one created 
in the fold function’s previous iteration—of the 
process ID of its next solver process by sending 
the Prev process a message:

Prev ! {set_next, Pid},

The message this statement sends is a tuple 
composed of the atom set_next and the Pid 
variable, where Pid is the pid for the newly cre-
ated solver. Later, I’ll explain the details of how 
the receiving Prev process acts on this message.

The final line of the fold function builds a new 
value for the fold accumulator by prepending the 
Pid process ID to the current accumulator’s head:

[Pid | Acc].

This is Erlang’s special syntax for list construc-
tion, and it’s highly efficient, because the runtime 
just stores the new value in the list’s head and links 
the tail to it. This new list serves as the return value 
of the fold function, which lists:fold/3 car-
ries forward as the accumulator’s new value for the 
next iteration of the fold. When the fold completes, 
lists:fold/3 returns the accumulator’s final 
value as its return value. Interestingly, prepending 
new pids to the accumulator means the accumula-
tor is built in reverse order, with lattice site 0 toward 
the right end of the list and lattice site NSites-1 at 
the left end. I address the list order later in the code.

The second argument to lists:fold/3 is the 
accumulator’s initial value, which for this appli-
cation is a single-element list consisting of the 
Sentinel’s process ID. The Sentinel is a spe-
cial process that handles the lattice boundaries. It 
responds to the same messages as regular solvers, 

but responds with special replies suited for a solver 
at either end of the lattice. Regular solvers there-
fore don’t need special logic to deal with missing 
neighbors if they’re at either end of the lattice.  
Instead, they just send the same messages to their 
neighbors, the same as any other solver, and the 
Sentinel responds appropriately.

The final argument to lists:fold/3 is a se-
quence of integers ranging from 0 to NSites-1, 
generated by the lists:seq/2 function. These 
integers identify each solver process’s lattice site, 
and are used primarily when the application’s final 
results are printed to the screen.

Upon completion, the lists:fold/3 function 
returns a list of all the pids of the solvers it created, 
with each solver except the leftmost one knowing 
the process ID of its next neighbor. The next line 
of code in our solution adds the final process link, 
informing the list’s leftmost process that its left 
neighbor process is the Sentinel:

hd(Pids) ! {set_next, Sentinel},

The hd/1 function returns the head of a list; 
here, it lets us isolate the leftmost process in the 
Pids list so that we can send it a message.

Before explaining the rest of the poisson1d/0 
function, which is concerned with collecting the 
results of the solver processes, it’s instructive to 
examine the code’s details that each concurrent 
solver executes. Each solver process executes the 
phi/4 function shown next:

phi(Collector, NIters, Prev, Consts) ->

  receive

    {set_next, Next} ->

       phi(NIters, Collector, Prev,  

         Next, Consts, 0.0)

end.

Here, the receive statement declares that 
the solver expects to get a message of the form 
{set_next, Next}, where Next is a variable 
bound to the second element of the received 
two-tuple. When it receives such a message, the 
function executes the body associated with that 
message, which in this case simply invokes a sepa-
rate phi/6 function. Because the Prev solver is 
passed as a function argument to phi/4 and the 
Next solver is received in the set_next mes-
sage tuple, each solver is aware of both its right 
and left neighbors by the time it enters the phi/6  
function.

The phi/6 function consists of two separate 
clauses. The first clause handles the special case 
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of the solver iteration count dropping to 0, while 
the second clause is a recursive function that cal-
culates the Poisson solution:

phi(0, Collector, _, _, {I, _, _}, 

Phi) ->

      Collector ! {self(), I, Phi};

phi(NIters, Collector, Prev, Next,  

{_, H, Rho}=Consts, Phi) ->

      PhiPrev = adjacent_phi(Prev, Phi),

      PhiNext = adjacent_phi(Next, Phi),

      NewPhi = (PhiPrev + PhiNext)/2  

      + H/2 * Rho,

      phi(NIters - 1, Collector, Prev,  

      Next, Consts, NewPhi).

The first clause simply sends the calculation 
result Phi together with the lattice site number 
I and the solver’s pid (retrieved via the self() 
call) back to the Collector process. The sec-
ond clause, though, is more involved. It invokes 
the adjacent_phi/2 function twice, first to 
send its current Phi value to the Prev solver, 
which is its neighbor to the right, and request 
that solver’s current Phi value, and then to  
do the same with the Next solver, its neighbor 
to the left. Once it obtains new values from each 
of its neighbors, it uses them together with H 
and Rho to calculate the NewPhi value for itself. 
Finally, it invokes itself recursively, passing its 
decremented iteration counter and its NewPhi 
value. Only when the counter reaches zero will 
the first clause of phi/6 match, thus ending the 
recursion.

The adjacent_phi/2 function is responsible 
for communicating with a solver’s neighbors. It 
takes an adjacent solver’s pid and the calling solv-
er’s current Phi value as arguments.

adjacent_phi(Adjacent, Phi) ->

    Adjacent ! {put, Phi, self()},

    receive

      {put, AdjacentPhi, Adjacent} ->

            AdjacentPhi

    end.

It first sends a message to the Adjacent solver 
in a three-tuple consisting of the atom put, the 
value of Phi, and its own pid obtained via the 
self() call. The receiving solver uses the in-
cluded pid to know where to send its reply, which 
is a message of the same three-tuple form. Upon 
receiving the reply, the adjacent_phi/2 func-
tion returns the AdjacentPhi value sent by  
its neighbor.

Because the Sentinel process described earlier is 
a special form of a solver, it handles the same messages 
as other solver processes, but does so differently.

sentinel() ->

   receive

         {set_next, _} ->

                ok;

         {put, _, Pid} ->

             Pid ! {put, 0.0, self()};

         stop ->

             exit(normal)

  end,

  sentinel().

The Sentinel handles the set_next message 
by simply ignoring the pid included in the mes-
sage (via the special underscore “don’t care” vari-
able). This is because, unlike a regular solver, the 
Sentinel has no need to initiate communication 
with any neighbors, so it need not store any pids 
for previous- or next-solver processes. To handle 
a put message, the Sentinel throws away the in-
cluded phi value and always sends back 0.0 for its 
own phi value. Finally, the Sentinel also handles 
a stop message, which allows the poisson1d/0 
function to tell the Sentinel to exit once all the 
solvers have completed their calculations. Figure 1  
shows the arrangement of the solver processes and 
the sentinel process.

The sentinel/0 function effectively lets the 
Sentinel process implement polymorphism, 
thereby simplifying all solver processes. By han-
dling the same messages as regular solver pro-
cesses, it lets solvers be unconcerned with the 
boundary conditions existing at either end of the 
Poisson lattice. Whether communicating with a 
regular solver process or the Sentinel process  
as its neighbor, a solver sends the same form of 
messages and receives the same form of replies.

The final portion of my Erlang 1D Poisson 
program, which is at the end of the poisson1d/0 
function, is responsible for collecting solutions 
from each solver.

lists:foreach(

   fun(Pid) ->

      receive

        {Pid, I, Phi} ->

           io:format("~2w ~.10f~n",  

           [I, Phi])

      end

   end, tl(lists:reverse(Pids))),

Sentinel ! stop,

ok.
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To collect each solver’s solutions, we walk the 
list of solver processes using lists:foreach/2. 
It takes two arguments—a function and a list—
and simply calls its function argument for each 
list element from left to right. The list we pass 
to lists:foreach/2 is a modified copy of 
the list of the solver pids we created earlier via 
lists:foldl/3. Recall that the original pro-
cess list contains the Sentinel process, which 
we don’t want to include in our collection process. 
Also recall that the process list is in reverse order 
because of how we built the accumulator during 
the fold. To fix these issues, we reverse the list’s 
order by passing it to lists:reverse/1, which 
results in the Sentinel process being at the front 
of the list. To skip it, we use the tl/1 function to 
obtain just the list’s tail. The result of these two 
function calls is a list of solver pids ordered from 
lattice points 0 to NSites-1.

For each solver process, our solution collec-
tor waits to receive a message from that specific 
process indicating its lattice point number I and 
its calculated value Phi. The presence of the Pid 
variable within the three-tuple message that the 
receive call waits for means that the collector 
won’t proceed until it receives a matching message 
from that specific process. Selective receive calls 
of this nature are extremely useful within Erlang 
applications, allowing different parts of the code 
to be concerned with receiving only the messages 
it knows about and understands, even if messages 
intended for some other parts of the code are al-
ready sitting unreceived in the process message  
queue. The selective receive scans the mes
sage queue to find a type matching the pattern 
or patterns specified in the receive call, skip-
ping any messages that don’t match. If it scans  
the whole queue without finding a matching  
message, receive will then block awaiting 
the arrival of a matching message. By default,  
receive blocks forever, but it can take an op-
tional after clause to specify a maximum num-
ber of milliseconds to wait.

Using the selective receive capability also helps 
order our Erlang solution’s printed output. If you 
run the original Python solution, you’re likely to 
see it print garbled output to the screen due to 
thread preemption. But because the Erlang solu-
tion collector waits in order for the result mes-
sage from each solver process, its printed output 
is never garbled as a result of overlapped process 
execution.

The collector effectively serializes the results 
of all the solvers by taking advantage of Erlang’s 
selective receive capabilities. Even if the collector 

receives a message from a solver out of order, that 
message will sit in the collector’s message queue 
until the collector executes a receive specifically 
matching it, and only then will the Erlang run-
time system extract that message from the queue 
and deliver it to the collector process. To imple-
ment something similar, the Python program 
would have to join each solver thread in order of 
lattice site identifier and then print the solution 
within the main thread instead of within each 
solver thread. Erlang’s selective receive makes our 
collector approach simple and elegant.

Interestingly, our Erlang program contains no 
condition variables, mutex locks, synchroniza-
tion blocks, or other thread-related constructs 
required in mainstream languages such as Java  
and C++.

Performance
Writing high-performing systems in Erlang is 
possible, but it depends on the application type. 
This article shows an Erlang Poisson 1D solver, 
but that choice isn’t intended to imply that Erlang 
is an excellent programming language for num-
ber crunching; the requirement to show a Poisson 
1D solver solution was simply part of the call for 
articles for this special issue. Solving such numer-
ical problems would be better done in a general- 
purpose language such as Fortran or C, or perhaps 
in a math-oriented domain-specific language.

Erlang is well suited for applications requir-
ing coordination, integration, and control, es-
pecially in systems that perform a significant 
amount of I/O such as Web and database servers. 
Using the Poisson 1D problem as a way to com-
pare Erlang’s performance to C or Fortran would  
be fruitless.

Rather than examining raw performance fig-
ures, it’s more instructive to examine how the 
Erlang lightweight process model fares on multi-
core systems. As explained earlier, by default the 
Erlang runtime executes one scheduler per CPU 
core. However, it also provides command-line op-
tions to enable only a particular number of sched-
ulers, as well as to turn off its virtual machine’s 
symmetric multiprocessing (SMP) capabilities 
altogether.

To illustrate Erlang’s ability to make use of 
multicore systems, I made the following changes 
to the Poisson 1D program to make it easier to use 
as a test program:

•	 allowed the number of lattice sites and number 
of iterations to be specified from the command 
line;
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•	 disabled all program output, to avoid measuring 
the time required to print results for numerous 
lattice sites to the screen; and

•	 avoided the use of the selective receive capability.

The reason I avoided selective receive for these 
experiments is worth noting. First, the results 
collector in the program originally used selec-
tive receive not only to order the solution results, 
but also to pedagogically explain a useful feature 
of Erlang messaging. The original program also 
processed only 16 lattice sites; however, for a much 
greater number of sites, selective receive can be 
expensive because the Erlang runtime must scan 
through a potentially large number of messages 
in the collector’s message queue to find a match. 
The collector is essentially a contended resource 
to which all site processes must send their results, 
so to better handle larger numbers of lattice sites, 
I modified the collector to avoid using selective 
receive and to instead receive all lattice site result 
messages in whatever order they arrive and sort 
the entire results set once all site messages have 
arrived.

I then ran the program with four different 
numbers of lattice sites—8,000, 16,000, 32,000, 
and 64,000—and ran each for 10,000 iterations. 
Lattice spacing for each run was 0.1, just as in the 
original program. I measured elapsed time and 
CPU usage for each different lattice size, first with 
Erlang’s SMP capabilities turned off, and then 
with varying numbers of schedulers. I tested these 
combinations using Erlang/OTP release R15B01 
on an otherwise idle Ubuntu 12.04 system with 
16 Gbytes of RAM and a 3.4-GHz Intel i7-2600K 
processor, which is a quad-core CPU but due to 
hyperthreading appears to Erlang as an eight-core 
system. I thus capped my testing at a maximum of 
eight Erlang schedulers.

Figures 2 and 3 show the results of this test-
ing. Figure 2 shows the elapsed time of each pro-
gram run, and Figure 3 focuses on the CPU usage  
for each run. Not surprisingly, running the solver 
with SMP disabled or with just a single scheduler 
thread uses only one CPU core and takes longer 
than any of the other trials where multiple sched-
ulers were used. Interestingly, running the solver 
in a single scheduler thread takes longer than 
running the same program with Erlang SMP 
disabled; this is because the SMP version of the 
Erlang runtime is larger and more complicated 
because it must handle multiple OS threads with 
appropriate locking, condition variables, and other 
typical, low-level concurrency constructs. For 
two or more schedulers, elapsed execution time 

generally decreased as the number of schedulers 
increased, regardless of the number of lattice sites.

Figure 3 shows that CPU usage increased lin-
early for smaller numbers of schedulers, but in-
creased somewhat more shallowly for higher 
numbers of schedulers. The graph also shows 
CPU usage to be independent of the number of 
lattice sites measured.

Figure 2. Program execution time as a function of the number of 
Erlang schedulers. As the number of Erlang schedulers increases, 
more CPU cores are used, thus reducing elapsed time for the revised 
Poisson 1D solver program independent of the number of Poisson 
lattice sites. (SMP stands for symmetric multiprocessing.)
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O verall, these trials show that Erlang 
lets applications easily make excel-
lent use of multicore systems. No-
tably, the code used for all test runs 

was identical; no code modifications or tuning 
were required to work with the varying numbers 
of Erlang schedulers.

The Erlang development team at Ericsson 
works constantly to ensure that each new re-
lease of Erlang takes as much advantage of 
the underlying OS and hardware concurrency 
capabilities as possible. Team members often 
have access to advanced multicore machines 
that they use to measure Erlang, reduce or 
eliminate any concurrency-related bottle-
necks, and tune their code so that it continues 
to perform well as CPU core counts continue  
to increase.

The 1D Poisson solver shows the beauty, power, 
and simplicity of the Erlang concurrency model, 
but there’s much more to Erlang/OTP than what 
this article has explored. Erlang/OTP comes 
with an extensive set of standard libraries and  

frameworks, and you can find many additional  
open source libraries and tools written in  
Erlang on GitHub and other sites. It also comes 
with several databases, including mnesia, its dis-
tributed transactional database. The runtime 
includes an extensive tracing system that lets de-
velopers peer into their running applications to 
see what messages its processes are sending and 
receiving, and what functions are being called 
along with the arguments and return values of 
those functions. The tracing feature is an in-
valuable debugging aid, and its overhead is low 
enough that it can be used on live production  
systems.

The source code for Erlang/OTP is freely 
available at www.erlang.org, and you can find doc-
umentation and learning materials there as well. 
Several excellent Erlang books are available,2–5 
and the Learn You Some Erlang for Great Good ! 
website (http://learnyousomeerlang.com) pro-
vides extensive tutorials for the language and the 
standard OTP frameworks.�
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