
Object Interconnections

Comparing Alternative Programming Techniques for Multi-threaded CORBA Servers (Column 7)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@ch.hp.com

Department of Computer Science Hewlett-Packard Company
Washington University, St. Louis, MO 63130 Chelmsford, MA 01824

This column will appear in the June 1996 issue of the SIGS
C++ Report magazine.

1 Introduction

Developers of multi-threaded servers face many challenges.
One important challenge is selecting a suitable concurrency
model. There are several concurrency models to choose
from including thread-per-request, thread-pool, and thread-
per-session. Our last two columns discussed the thread-per-
request and thread-pool concurrency models, respectively.
We showed how each could be used to develop multi-threaded
server programs for a distributed stock quote application.

This column discusses the thread-per-session model, in
which each new session created for a client is assigned a
thread that processes requests for that session. Following the
format of our recent columns, this column will illustrate the
thread-per-session model by developing new multi-threaded
stock quote servers using C, C++ wrappers, and CORBA.

2 The Thread-per-Session Concur-
rency Model

Figure 1 illustrates the main components in the thread-per-
session concurrency model. These components include a
main thread and a set of session threads. The main thread re-
ceives new session initiation requests from clients. It creates
a new session thread to handle each client. Session threads
receive and service stock quote requests from the clients.

Under certain circumstances, thread-per-session performs
better than the thread-per-request and thread-pool models. Its
advantages are (1) it amortizes connection setup costs and (2)
it supports efficient long-duration conversations with clients.
On the other hand, thread-per-session is less useful if cer-
tain sessions receive considerably more requests than others
since they will become a performance bottleneck. Moreover,
if each client makes only one request per session, the perfor-
mance of the thread-per-session model is roughly the same
as the thread-per-request model.

Naturally, we strongly urge you to analyze, prototype, and
measure the performance of various concurrency models be-

SERVERSERVER
CLIENTCLIENT

CLIENTCLIENT

2:2: ACCEPT ACCEPT

3:3: SPAWN THREAD SPAWN THREAD

QUOTE SERVER

1:1: BIND BIND

CLIENTCLIENT

sessionsession
threadthread

sessionsession
threadthread

sessionsession
threadthread

mainmain
threadthread

4:4: HANDLE QUOTE REQUEST HANDLE QUOTE REQUEST

Figure 1: Thread-per-Session Architecture for the Stock
Quote Server

fore committing to a particular approach. As we examine the
C, C++ wrapper, and CORBA solutions below, keep in mind
the assumptions built into the thread-per-session model (such
as the typical number or size of client requests, the interar-
rival time between requests, and request duration). Note how
the strengths and weaknesses of the solution will change as
the assumptions change.

3 The C Thread-per-Session Solution

3.1 Implementing Thread-per-Session in C

The following example shows a thread-per-session solution
written using C, sockets, and Solaris threads [1].1 As in

1Porting our implementation to POSIX pthreads or Win32 threads is
straightforward.

1

previous columns, we use the following set of C utility func-
tions:

/* WIN32 already defines this. */
#if defined (unix)
typedef int HANDLE;
#endif /* unix */

// Factory function that allocates a
// passive-mode listener socket.
HANDLE create_server_endpoint (u_short port);

// Receive stock quote requests from clients.
int recv_request (HANDLE h, Quote_Request *req);

// Return the quote to the client.
int send_response (HANDLE h, long value);

// Determine current stock price from the
// Quote Database.
long lookup_stock_price (Quote_Database *,

Quote_Request *);

// Calls recv_request(), lookup_stock_price(),
// and send_response().
int handle_quote (HANDLE h);

The implementations of these functions were first shown in
the October 1995 issue of the C++ Report and were revised
to become thread-safe in the February 1996 issue.

3.1.1 The main() Thread

The main thread runs an event loop that continuously accepts
new connections from clients and spawns a thread to run
each client session. Our server main is almost identical to
the one we presented for the thread-per-request C solution in
our February column:

const int DEFAULT_PORT = 12345;

int main (int argc, char *argv[])
{
/* Port to listen for connections. */
u_short port =
argc > 1 ? atoi (argv[1]) : DEFAULT_PORT;

/* Create a passive-mode listener endpoint. */
HANDLE listener = create_server_endpoint (port);

/* The event loop for the main server thread. */
svc_run (listener);
/* NOTREACHED */

}

The key difference is that unlike the thread-per-request
model, we don’t dynamically spawn a thread for each new
client quote request. Instead, we spawn a thread for each
client session, as shown in the following svc run function
(to emphasize the differences we’ve prefixed the changes
with /* !!!):

void svc_run (HANDLE listener)
{
/* Main event loop. */

for (;;) {
/* Wait to accept a new connection. */
HANDLE handle = accept (listener, 0, 0);

thr_create
(0, /* Use default thread stack. */
0, /* Use default thread stack size. */
/* !!! Thread entry point. */

&session_thread,
(void *) handle, /* Entry point arg. */
THR_DETACHED | THR_NEW_LWP, /* Flags. */
0); /* Don’t bother returning thread id. */

}
/* NOTREACHED */

}

3.1.2 The session thread() Function

A session thread runs the the following function:

void *session_thread (void *arg)
{
HANDLE handle = (HANDLE) arg;

/* Process all stock quote requests from
a client until it closes down. */

while (handle_quote (handle) > 0)
continue;

/* Shutdown the handle to reclaim OS resources. */
close (handle);

/* Exit the thread. */
thr_exit (0);
/* NOTREACHED */
return 0;

}

Each session thread runs for the duration of the client’s con-
versation. The session thread function repeatedly calls
handle quote. This function extracts stock quote re-
quests from the database, looks up the results, and returns
each result to the client. Since multiple session threads
can access the quote database simultaneously, we’ll reuse
the thread-safe implementation ofhandle quote from our
February C++ Report column. This function returns 0 when
a client closes down the session, at which point the session
thread exits.

3.2 Evaluating the C Solution

The C solution presented above is very straightforward. The
implementation is much simpler than the thread-pool solution
we presented in our last column. In particular, there’s no
need to implement a thread-safe HANDLE queue because
each session can block in its own thread. In addition, we
can reuse most of the code from the thread-per-request C
solution.

The thread-per-request C implementation from our Febru-
ary C++ Report column closed down the connection after
every request. In contrast, our current C thread-per-session
implementation keeps the connection open until the client
explicitly closes it. This is beneficial if client applications
make many requests to the same quote server.

Despite these advantages, the C solution suffers from the
same problem described in previous columns, namely that it’s
written at a very low level. This makes it difficult to separate
the problem of providing stock quotes from the problems as-
sociated with writing distributed applications. For instance,
if we changed the format of stock quote requests and replies,
we’d have to reimplement most of the utility code that we
reused in this example.

2

SERVERSERVER
CLIENTCLIENT

CLIENTCLIENT

2:2: CREATE CREATE,, ACCEPT ACCEPT,,
 AND ACTIVATE AND ACTIVATE

 QUOTE QUOTE__HANDLERHANDLER

QUOTE SERVERQUOTE SERVER

1:1: BIND BIND

CLIENTCLIENT

: Quote: Quote
HandlerHandler

: Quote: Quote
HandlerHandler

: Quote: Quote
HandlerHandler

4:4: HANDLE QUOTE REQUEST HANDLE QUOTE REQUEST

3:3: SPAWN THREAD SPAWN THREAD

: Reactor: Reactor

: Quote: Quote
AcceptorAcceptor

Figure 2: ACE C++ Architecture for the Thread-per-Session
Stock Quote Server

4 The C++ Thread-per-Session Solu-
tion

4.1 Implementing Thread-per-Session in C++

This section illustrates a C++ thread-per-session implemen-
tation based on ACE [2]. The C++ solution is structured
using the following three classes (shown in Figure 2):

�Quote Handler: This class implements an active object2

that interacts with clients by receiving quote requests, looking
up quotes in the database, and returning responses.

�Quote Acceptor: A factory that implements the strategy
for accepting connections from clients, followed by creating
and activating Quote Handlers.

� Reactor: Encapsulates the select and poll event
demultiplexing system calls with an extensible and
portable callback-driven object-oriented interface. The
Reactor dispatches the handle input method of the
Quote Acceptor when connection events arrive from
clients.

Variations of these components have been used in previous
implementations of the quote server in our earlier C++ Report
columns. Below, we illustrate how these components can be
extended and reused to implement thread-per-session.

2An active object maintains its own thread of control, which allows it to
block on I/O channels and process messages without directly impacting the
quality of service of other active objects.

4.1.1 The Quote Handler Class

The Quote Handler class is responsible for processing
client quote requests. Its implementation is very similar to
the one used for the thread-per-request concurrency model:

// Reuse the C handle_quote() function.
extern "C" int handle_quote (HANDLE);

template <class STREAM> // IPC interface
class Quote_Handler
: public Svc_Handler<STREAM>

// This ACE base class defines "STREAM peer_;"
{
public:
// !!! Assign a connected STREAM to this instance.
Quote_Handler (STREAM &peer_stream) {

Quote_Handler<STREAM>::peer_.set_handle
(peer_stream.get_handle ());

}

// !!! This method is called by the Quote_Acceptor
// to initialize a newly connected Quote_Handler,
// which turns itself into an active object.
virtual int open (void) {

Thread::spawn
// Static entry point into the thread.
(&Quote_Handler<STREAM>::session_thread,
(void *) this, // Entry point arg.
THR_DETACHED | THR_NEW_LWP); // Thread flags.

}

// !!! Static thread entry point method.
static void *session_thread (void *args) {

Quote_Handler<STREAM> *client =
static_cast <Quote_Handler<STREAM> *> args;

// Extract out the client’s socket HANDLE.
HANDLE handle = client->peer_.get_handle ();

// Process all stock quote requests from
// a client until it closes down. We
// reuse our C handle_quote () function
// we defined earlier.
while (::handle_quote (handle) > 0)

continue;

// Shut down the STREAM to avoid memory
// leaks and HANDLE leaks.
client->close ();

// Exit the thread.
thr_exit (0);
/* NOTREACHED */

}

// Close down the handler and release resources.
void close (void) {

// Close the connection to avoid HANDLE leaks.
this->peer_.close ();

// Commit suicide to avoid memory leaks...
delete this;

}

// ...
};

Each session thread executes the static member function
session thread. This function is almost identical to
the C function of the same name defined in Section 3.1.2. In
fact, the C++ version even calls the C handle quote util-
ity to perform the stock quote lookup. As usual, C++’s ability
to integrate existing C code pays off by reducing effort.

When the client closes down, theQuote Handler cleans
up the connection. The only real difference between the
C and C++ session thread functions is that the C++

3

version must deallocate itself before the thread exits since
the Quoter Acceptor factory dynamically allocated the
memory for the Quote Handler.

4.1.2 The Quote Acceptor Class

The Quote Acceptor class is an implementation of the
Acceptor pattern [3] that creates Quote Handlers to pro-
cess quote requests from clients. Its implementation is iden-
tical to the one shown in our previous column:

typedef Acceptor <
Quote_Handler <SOCK_Stream>, // Quote service.
SOCK_Acceptor> // Passive conn. mech.
Quote_Acceptor;

When a client connects with the server, the
Reactor invokes the handle input method of the
Quote Acceptor automatically. This method initializes
a client’s Quote Handler by performing the following
three-step Quote Acceptor strategy:

1. Handler creation – which dynamically creates a
Quote Handler.

2. Handler connection acceptance – which accepts the
connection into the handler using theSOCK Acceptor
(this is a C++ wrapper for passive-mode sockets that
creates connected SOCK Streams [4]).

3. Handler activation – which in-
vokes the Quote Handler::open method. In the
thread-per-session implementation, this open method
spawns a new thread to handle client requests, as we
showed in Section 4.1.1 above.

4.1.3 The main() Server Function

The C++ server main is responsible for initializing the
Quote Acceptor and running the main event loop, as
follows:

// Default constants.
const int DEFAULT_PORT = 12345;

int main (int argc, char *argv[])
{
u_short port =
argc > 1 ? atoi (argv[1]) : DEFAULT_PORT;

// Server address.
INET_Addr server_addr (port);

// Factory that produces connected Quote_Handlers.
Quote_Acceptor acceptor (server_addr);

// The event loop for the main server thread.
svc_run (acceptor);
/* NOTREACHED */

}

The svc run function shown below is identical to the one
used by the thread-pool:

void svc_run (Quote_Acceptor &acceptor)
{
// Install Quote_Acceptor with Reactor.
REACTOR::instance ()->register_handler (&acceptor);

// Event loop that dispatches all events as
// callbacks to appropriate Event_Handler subclass
// (such as the Quote_Acceptor).

for (;;)
REACTOR::instance ()->handle_events ();

/* NOTREACHED */
}

The main thread’s event loop runs continuously within
the REACTOR Singleton, which calls back to the
Quote Acceptor’s handle input method when con-
nections arrive from clients. This method implements the
Acceptor pattern strategy shown in Section 4.1.1 to cre-
ate, accept, and activate a new Quote Handler. Unlike
our thread-pool implementation, however, all subsequent the
stock quote request dispatching and processing takes place
in the session threads.

4.2 Evaluating the C++ Solution

The thread-per-session C++ solution is an improvement
over the thread-pool and thread-per-request C++ imple-
mentations in previous columns. Like the C version, the
Quote Handler thread keeps running until the client dis-
connects and doesn’t need a Request Queue since each
session thread blocks independently. The followingare some
other advantages of our C++ solution.

� Simpler connection management: Our C++ implemen-
tationof thread-pool from our last column maintained a cache
of client connections. However, our thread-per-session C++
connection management is much simpler than the thread-pool
model. For instance, there’s no need for complex reference
counting to ensure that a Quote Handler is not deleted
until allQuote Requests stored in theRequest Queue
are removed.

� More flexible design: The C++ version of thread-per-
session is more flexible than the C version largely because it is
based on components in the ACE framework. The ACE com-
ponents provide a generic software architecture consisting of
aReactor, Acceptor, and Svc Handlers, as well as a
set of standard default behavior (such as event demultiplex-
ing and factories). In addition, the ACE components help to
decouple the concurrency model of the Quote Handler’s
from the rest of the quote server architecture. For instance,
the decision to become an active object is localized within the
openmethod of the Quote Handler, rather than with the
main svc run method, as it is with the C implementation.
This makes it possible to switch concurrency schemes very
easily without affecting existing code. If you examine the
C++ solutions in our recent columns, you’ll see that they all
have a common software architecture that can be customized
easily to support different concurrency models.

As usual, the C++ solution is an improvement over the C
version, but it still doesn’t adequately automate some com-
mon tasks (such as marshaling and object activation) neces-
sary to build distributed applications. Therefore, we’ll take

4

a look at a CORBA solution that does address more of these
issues.

5 The CORBA Thread-per-Session So-
lution

The thread-per-session concurrency model is supported by
a number of CORBA implementations including MT-Orbix
and ORBeline. This section illustrates how to program the
client and server sides of our thread-per-session stock quote
implementation using the concurrency features of MT-Orbix.
We’ll first examine the changes we had to make to the IDL
Stock module and the client-side application and then ex-
plore the thread-per-session server implementation in detail.

5.1 IDL Changes

To accommodate the thread-per-session concurrency model,
we modified the IDL Stock module as shown below:

// Define the interface for a stock quote server.
module Stock
{
exception Invalid_Stock {};
exception Invalid_Quoter {};

interface Quoter {
// Returns the current stock value or
// throws an exception.
long get_quote (in string stock_name)
raises (Invalid_Stock, Invalid_Quoter);

// Destroy a Quoter session and
// release resources.
void destroy ();

}

// Manage the lifecycle of a Quoter object.
interface Quoter_Factory {
// Returns a new Quoter selected by name
// e.g., "EF Hutton," "Reuters,", etc.
Quoter create_quoter (in string name)
raises (Invalid_Quoter);

};
};

The new IDL interface adds a Quoter Factory that cre-
ates Quoters. There are several benefits of this approach:

� Customized quality of service: Clients can use a
Quoter Factory to create different types of Quoters
that support a range of functionality or performance char-
acteristics tailored to their individual needs. For instance,
the Quoter Factory can return a new Quoter selected
by a stock quoting service name such as “EF Hutton” or
“Reuters.” Likewise, the factory operation provided by the
Quoter Factory might take parameters that determine
the implementation and behavior of the created Quoter.
One such parameter might control how recent the stock value
quotes handed out by the Quoter must be. In addition, on
public access ATM networks that support variable bandwidth
allocation, a Quoter Factory might create Quoter ob-
jects whose quality of service depends on rates paid by clients.

QUOTE

SERVER: Reuters: Reuters
QuoterQuoter

: EF Hutton: EF Hutton
QuoterQuoter

: Quoter: Quoter
FactoryFactory

QUOTE

CLIENT

: EF Hutton: EF Hutton
QuoterQuoter
ProxyProxy

: Quoter: Quoter
FactoryFactory
ProxyProxy

get_quote()get_quote()

destroy()destroy()

create_quoter()create_quoter()

namename

valuevalue

namename

QuoterQuoter

: Reuters: Reuters
QuoterQuoter
ProxyProxy

QUOTE CLIENT QUOTE SERVER

: Quoter: Quoter
ProxyProxy

: Quoter: Quoterget_quote()get_quote()

namename

valuevalue

R
P

C
R

P
C

---S
T

Y
L

E
S

T
Y

L
E

O
B

JE
C

T
O

B
JE

C
T
---S

T
Y

L
E

S
T

Y
L

E

Figure 3: RPC-style vs. Object-style Communication

�Efficient load balancing: AQuoter Factory can en-
sure new Quoter objects are created in particular locations
to simplify administration or reduce overhead. Section 5.3
illustrates one approach, where the Quoter Factory
always creates Quoter objects within its own pro-
cess. Directing all Quoter creation requests to only one
Quoter Factory can create a performance bottleneck,
however. Therefore, if multiple host machines are avail-
able, several Quoter Factory objects can be created, one
on each machine. A factory finder service could be used
to select the Quoter Factory that can create Quoter
objects on the host machine with the lightest load.

� Flexible lifecycle control: Our Quoter Factory
gives clients more flexibility to control the lifecycle of
stock quoter implementations than our previous design. For
instance, we’ve also added a destroy operation to the
Quoter interface. This allows clients to release server re-
sources (such as threads or client-specific state) when a ses-
sion terminates. Without the destroy interface, the server
must implement a more complex distributed reference count-
ing schemes to determine when to release client resources.

5.2 Client Changes

In addition to modifying the server implementation, our
use of a Quoter Factory affects the way that clients in-
teract with the server. The client-side approach in our May
1995 column used the following “RPC-style” interface to
invoke remote operations:

// Create desired service name.
const char *name = "Quoter";
Name service_name;
service_name.length (1);
service_name[0].id = name;

// Initialize and locate the Quote service.
Object_var obj =

5

bind_service (argc, argv, service_name);

// Narrow to Quoter interface and away we go!
Quoter_var q = Quoter::_narrow (obj);

const char *stock_name = "ACME ORB Inc.";
int result = -1;

try {
CORBA::Long value = q->get_quote (stock_name);
cout << "value of " << stock_name

<< " = $"
<< value << endl;

result = 0;
} catch (Invalid_Stock &) {
cerr << stock_name

<< " is not a valid stock name!\n";
}
return result;
// Destructor of q releases object reference.

}

This code isn’t much different from programming with
DCE or Sun RPC. As shown in the top part of Figure 3, a
client uses the bind service utility function3 to acquire
a “binding handle” to the remote service. It then uses this
handle to invoke a method call on that service. The primary
difference between an RPC solution and our CORBA solution
is that we encapsulate the binding handle within an object
reference. This reference refers to an individual CORBA
object instead of referring to an RPC server port.

As discussed in Section 5.1, using an RPC-style interface
to implement thread-per-session is less flexible than using the
interface provided by theQuoter Factory. As illustrated
in the bottom part of Figure 3, the Quoter Factory inter-
face allows clients to talk to objects via object references that
serve as proxies to individual sessions. In this “object-style”
interface, sessions can use utilize a different quoter service
(such as EF Hutton, Reuters, etc.) and can each run in their
own thread of control.

Adding a Quoter Factory results in the the following
changes to the client (as before, we’ve marked them with //
!!! to emphasize the difference):

// !!! Create desired service name.
const char *name = "Quoter_Factory";
Name service_name;
service_name.length (1);
service_name[0].id = name;

// !!! Initialize and locate Quoter_Factory
// service.
Object_var obj =
bind_service (argc, argv, service_name);

// !!! Narrow to Quoter_Factory interface
// and away we go!
Quoter_Factory_var qf = Quoter_Factory::_narrow (obj);

const char *stock_name = "ACME ORB Inc.";

// !!! Select name of desired quoter.
const char *quoter_name = "My Quoter";
int result = -1;

try {
// !!! Ask factory to produce a new Quoter.
Quoter_var q = qf->create_quoter (quoter_name);

3The bind service function hides the details of initializing the ORB
and locating object references with the CORBA Naming service [5].

SERVERSERVER
CLIENTCLIENT

CLIENTCLIENT

OBJECTOBJECT

ADAPTERADAPTER

2:2: ACCEPT ACCEPT

3:3: INVOKE INVOKE

 FILTER FILTER((SS))

4:4: DEMULTIPLEX DEMULTIPLEX

5:5: ENQUEUE ENQUEUE

 REQUEST REQUEST

QUOTE

SERVER

1:1: BIND BIND

CLIENTCLIENT

6:6: HANDLE QUOTE REQUEST HANDLE QUOTE REQUEST

: Msg: Msg
QueueQueue

: My_Quoter: My_Quoter
ImplImpl

: Msg: Msg
QueueQueue

: My_Quoter: My_Quoter
ImplImpl

: Msg: Msg
QueueQueue

: My_Quoter: My_Quoter
ImplImpl

: TPS: TPS
ThreadThread
FilterFilter

Figure 4: MT-Orbix Architecture for the Thread-per-Session
Stock Quote Server

CORBA::Long value = q->get_quote (stock_name);
cout << "value of " << stock_name

<< " = $"
<< value << endl;

// !!! Explicitly destroy the Quoter.
q->destroy ();

// !!! Destructor of q releases object reference.
result = 0;

} catch (Invalid_Stock &) {
cerr << stock_name

<< " is not a valid stock name!\n";
}
return result;
// !!! Destructor of qf releases object reference.

}

Incidentally, the notion of customized object creation is
supported by the OMG Lifecycle Service Specification [5].
It specifies a GenericFactory interface intended to al-
low clients to create a wide variety of objects. One of the
arguments to the GenericFactory::create object
operation is a sequence of named any values. Different
GenericFactory implementations can use these values
to help decide what object to create, or might pass the val-
ues on to the newly-created object, or might even do both.
Although we’ve omitted the COSS Lifecycle services in our
example to save space, future columns will address this topic
in depth.

6

5.3 Implementing Thread-per-Session in MT-
Orbix

The MT-Orbix implementation of thread-per-session is a clas-
sic example of the Active Object pattern [6]. Each active
object is responsible for servicing a different client session.
Our thread-per-session implementation uses the thread-safe
Message Queue class defined in the thread-pool imple-
mentation from our previous column. Rather than main-
taining one queue of incoming requests per server, however,
each session has its own thread and its own queue. MT-Orbix
needs this queue to provide its multiple concurrency models
in a relatively uniform way.

There are several differences from the thread-per-request
and thread-pool implementations shown in our previous two
columns. First, the thread-per-session concurrency model
does not pre-spawn any threads in advance. In addition,
we’ve added a destroy operation, which helps manage the
lifecycle of client sessions.

5.3.1 The My Quoter Class

The My Quoter class shown below implements the bulk of
the thread-per-session stock quoter behavior using MT-Orbix
and ACE components:

class My_Quoter
{
public:
// Constructor
My_Quoter (const char *name);

// A thread executes this per-active object.
static void *session_thread (void *);

// Returns the current stock value (this is
// the same implementation as the thread-pool).
virtual long get_quote (const char *stock_name,

CORBA::Environment &);

// Thread filter uses this method to queue
// the Request to the thread than handles the
// client session.
virtual void insert_at_tail (CORBA::Request *req)
{
// Insert Request into queue, blocking if full.
msg_queue_.insert (req);

}

// Destruction operation
virtual void destroy (CORBA::Environment &) {
// Insert a NULL pointer, which notifies
// the session thread to shutdown.
msg_queue_.insert (NULL);

}

protected:
// Queue of pending requests handled by our thread.
CORBA::Request *remove_head (void) {
CORBA::Request *req;

// Called by the session thread to dequeue
// the next message from its client. Will block
// if queue is empty.
msg_queue_.dequeue (req);
return req;

}

// ACE thread-safe message queue containing
// CORBA Request pointers for this session.
Message_Queue<CORBA::Request *> msg_queue_;

// ...
};

DEF_TIE_Quoter (My_Quoter)

As in our previous column, the My Quoter class is con-
nected into the Orbix Object Adapter by using the Orbix
“TIE” approach instead of inheriting from a skeleton class
generated from the Quoter IDL. In particular, note that
the My Quoter class doesn’t inherit from any base class.
Instead, it use the Orbix “TIE” approach to associate the
CORBA interfaces with our implementation. The “TIE” ap-
proach is used for both our My Quoter class and for our
Quoter Factory implementation, shown below.

5.3.2 The My Quoter Factory Class

Factory objects provide construction operations that can
take different numbers and types of arguments. The
My Quoter Factory class is a CORBA “constructor” that
creates a suitable Quoter implementation in response to a
client request, as follows:

class My_Quoter_Factory
{
Quoter_ptr create_quoter (const char *name,

CORBA::Environment &env) {
Quoter_ptr quoter;

// Perform Factory Method selection of
// the subclass of Quoter.

if (strcmp (name, "EF Hutton") == 0)
quoter = new TIE_Quoter (EF_Hutton_Quoter)

(new EF_Hutton_Quoter (name);
else if (strcmp (name, "Reuters") == 0)

quoter = new TIE_Quoter (Reuters_Quoter)
(new Reuters_Quoter (name);

else if (strcmp (name, "My Quoter") == 0)
// Dynamically allocate a new My_Quoter object.
quoter = new TIE_Quoter (My_Quoter)

(new My_Quoter (name);
else {

// Raise exception.
env.exception (new Stock::Invalid_Quoter);
return;

}

// Increment reference count.
quoter->_duplicate ();

// Attach a new thread to the Quoter object.
Thread::spawn (&My_Quoter::session_thread,

DEREF (quoter), // Get My_Quoter.
THR_DETACHED | THR_NEW_LWP);

return quoter;
}

};

DEF_TIE_Quoter_Factory (My_Quoter_Factory)

The create quoter operation is a Factory Method [7]
that’s called by the Object Adapter when a client initiates a
session. It uses the name of the quoter service passed in by
the client to help select an appropriate Quoter implemen-
tation.

Our client in Section 5.2 specified the My Quoter im-
plementation. Therefore, the factory will create a new
My Quoter, duplicate its object reference, spawn a thread
for the new client session, and return the object reference of
the newly-created Quoter object.

7

Note how the Orbix-specific DEREF macro is used to ac-
cess the actual implementation object of My Quoter. This
implementation object is encapsulated within the “TIE” that
associates the automatically generated IDL skeleton with the
My Quoter implementation.

5.3.3 The session thread Method

The session thread method shown below is a static
C++ member function used as the entry point into the thread
maintained for each client session:

void *My_Quoter::session_thread (void *arg)
{
My_Quoter *quoter = static_cast<My_Quoter *> arg;

// Loop forever, receiving new Requests,
// and dispatching them....
for (;;) {
CORBA::Request *request = quoter->remove_head ();

if (request != NULL)
// This call will perform the upcall,
// send the reply (if any) and
// delete the Request for us...
CORBA::Orbix.continueThreadDispatch (*request);

else {
// A NULL pointer signifies that the client
// has shutdown via the destroy() operation.
CORBA::release (quoter);

}
}

return 0;
}

Note how similar this event loop is to the pool thread
method in our previous column. The primary difference is
that in the thread-pool implementation, there were a fixed
number of threads running the same event loop (i.e., one
for each thread in the pool). In contrast, there is a separate
thread running the event loop shown in session thread
for each active client.

One advantage of the thread-per-session model is that the
same connection can be maintained as long as the association
between the client and its Quoter object is maintained. In
contrast, the thread-pool model doesn’t necessarily maintain
this association (though we implemented it both ways in our
previous column).

An interesting part of the session thread function
is its handling of the destroy operation. As shown
above, the implementation of destroy puts a NULL
Request pointer onto the object’s message queue. When
session thread removes a NULL pointer from its queue,
it calls CORBA::release to release the object reference
and destroy the CORBA object. Some ramifications of this
approach are discussed below in Section 5.4.

5.3.4 The TPS Thread Filter Class

Now we need a way to bring all the pieces together. In
MT-Orbix, this is accomplished via a ThreadFilter. As
we’ve shown in previous columns, Orbix allows applica-
tions to interpose C++ “filter” objects into the request dis-
patch path. Filters can perform a number of tasks such as

intercepting, modifying, or examining each request sent to
and from the system.4 To dispatch an incoming CORBA
request to its intended session thread, we’ve created a sub-
class of the Orbix ThreadFilter class that overrides the
inRequestPreMarshalmethod as follows:

class TPS_Thread_Filter : public ThreadFilter
{
int inRequestPreMarshal (CORBA::Request &req,

CORBA::Environment &env) {
// Get the target of the request.
CORBA::Object_ptr obj = req.target ();

// Ensure it’s a Quoter object (it could
// be a Quoter_Factory).
Quoter_ptr quoter = Quoter::_narrow (obj);

if (quoter == 0)
// Must be the Quoter_Factory..
// continue the work in the main thread by
// telling Orbix to dispatch as normal.
return 1;

// Get the My_Quoter object.
if (My_Quoter *my_quoter =

dynamic_cast<My_Quoter *> DEREF (quoter)) {
// Pass the request to the per-session thread.
my_quoter->insert_at_tail (&req);

else if (/* Check for EF Hutton */)
// ...

else if (/* Check for Reuters */)
// ...

else {
// Not supported, suppress further
// dispatching and raise an exception.
env.exception (new Stock::Invalid_Quoter);
return 0;

}

// If success, tell Orbix we’ll dispatch
// the request later...
return -1;

}
}

Our TPS Thread Filter acts only on incoming
quote requests. When this filter is invoked, Orbix
has already demultiplexed the incoming CORBA re-
quest to the implementation object identified by the
CORBA::Request::target method. For each request,
our filter first tries to obtain a reference to target object
representing the client’s session. We attempt to narrow
this to a Quoter object reference. If the narrow fails, it
means the request is targeted to another object (specifically, a
Quoter Factory). In this case, a 1 is returned to tell Or-
bix to continue dispatching the request normally in the main
thread. This causes Orbix to invoke the create quoter
upcall on the My Quoter Factory implementation.

If the narrow succeeds, we use C++ RTTI to determine the
actual type of the quoter object. If it’s a My Quoter, the
request is inserted at the end of the per-session queue for the
target Quoter active object. The selected active object will
subsequently remove the request from its queue and perform
the appropriate session processing, as shown in Figure 4.

We’ve omitted the code for the EF Hutton and Reuter’s
implementations, which would be similar to My Quoter.
Note that if quoter doesn’t match any of the alternatives

4Orbix filters are an implementation of Shapiro’s Stub-Scion Pair (SSP)
Chains; see [8] for more details.

8

we’ll raise an Invalid Quoter exception and return 0,
which tells Orbix not to continue dispatching the operation.
Otherwise, if we find a match �1 is returned, which tells
Orbix not to continue dispatching the request since it will be
handled in the specified session thread.

5.3.5 The main() Function

The main server program implements the thread-per-session
concurrency model as follows:

int main (int argc, char *argv[])
{
// Initialize the factory implementation.
My_Quoter_Factory_var quoter_factory =
new TIE_My_Quoter_Factory (My_Quoter_Factory)

(new My_Quoter_Factory);

// Wait for work to do in the main thread
// (which is also the thread that shepherds
// CORBA requests through TPS_Thread_Filter).
try {

CORBA::Orbix.impl_is_ready ("Quoter_Factory");
} catch (...) {

// ...
}

return 0;
}

When the Quote server first starts up, it creates
a My Quoter Factory object to service client ses-
sion initiation requests. Then, the main server thread
calls Orbix.impl is ready to notify Orbix that the
Quoter Factory implementation is ready to service re-
quests. The main thread is responsible for shepherd-
ing CORBA requests through the filter chain to the
TPS Thread Filter. The filter then demultiplexes the
requests to the appropriate session thread active ob-
ject, which runs them to completion.

5.4 Evaluating the MT-Orbix Solution

As we’ve seen in previous columns, the effort required to
transform the CORBA solution from the original thread-per-
request server to the thread-per-session concurrency model
was relatively minor, even though we also changed from us-
ing RPC-style communication to Object-style. This change
added a Quoter Factory, which supports the creation of
customized Quoter objects. By having the server export
Quoters created by Quoter Factories, servers can
transparently create different custom alternatives and pass
them back to clients.

There are some drawbacks to implementing the thread-per-
session concurrency model with CORBA, however. Some of
these drawbacks are related to MT-Orbix, whereas others are
more subtle issues related to programming with CORBA.

� Performance: One potential drawback to the MT-Orbix
solution is its use of theMessage Queue to buffer CORBA
requests to session threads. This is a consequence of the
use of thread filters in MT-Orbix. Thread filters are a very
powerful way of decoupling the concurrency model used by
the server from the Object Adapter and the ORB itself, which

enables MT-Orbix to support multiple concurrency model in
a convenient, uniform manner. By using the Orbix thread
filter, the CORBA solution required only a few changes to
the thread-per-request code.

However, the MT-Orbix thread filter architecture can cause
additional overhead due to the extra context switching and
synchronization necessary to queue requests on the thread-
safe Message Queue. Other ORBs that support the thread-
per-session model, such as ORBeline, don’t have this partic-
ular restriction, though they typically don’t support as many
concurrency models either. Our future columns will address
other topics related to the performance of alternative multi-
threaded ORB designs.

�Violating thread-per-session semantics: Our MT-Orbix
solution assumes the client that creates the Quoter object is
the only one who uses the object and is the one who destroys
it. However, when using CORBA, a common practice is to
have the object reference obtained from a factory be made
available to multiple applications. For example, an applica-
tion may invoke a factory operation to create a COSS Event
Channel and advertise it in the COSS Naming Service [5].
Other applications can then obtain the event channel’s object
reference from the Naming Service and attach themselves to
it as producers or consumers of events.

The solution we showed above will not be a thread-per-
session model if the client passes off the My Quoter object
reference obtained from the factory to other applications. In
this case, multiple clients can have their requests serviced by
the same thread. If this occurs, the solution becomes a thread-
per-object solution. As its name implies, the thread-per-
object approach causes all requests for a specific object to be
handled on a single thread dedicated only to that object. Both
thread-per-session and thread-per-object allow only one of
the object’s operations to be active at any time.5 In contrast,
the thread-per-request and thread-pool models allow several
of an object’s operations to be invoked simultaneously on
multiple threads.

In this column, we’ve used thread-per-object to implement
thread-per-session by following a convention that assumes
only a single client uses each Quoter’s object reference.
To really implement thread-per-session in CORBA, the ORB
would have to maintain a separate thread for each client con-
nection. Our stock quoter application can’t do it because MT-
Orbix does not expose the association between the client’s
connection and the request is not available to our thread filter.
This isn’t necessarily a drawback, however. If the ORB were
to allow access to such information, it might prevent itself
from implementing intelligent connection management (e.g.,
reusing connections in a least-recently-used fashion to avoid
running out of file descriptors).

�Managing Object References: Thecreate factory
method inMy Quoter Factory in Section 5.3.2 contained
a call to increment the dynamically allocated Quoter’s ob-
ject reference count before returning it from the function.

5Incidentally, this is the concurrency model supported by Network OLE,
where it is called the “apartment” model of threading.

9

Forgetting to duplicate object references before passing them
as operation results is a very common mistake with beginning
CORBA programmers. The OMG C++ Mapping Specifica-
tion requires that the client of an operation returning an object
reference to assume ownership of that object reference and
release it when it has finished using it. However, this gets
a little tricky when the client and object are located on two
different machines. In that case, the ORB must marshal the
object reference into a form suitable for network transmission
in order to return it to the client.

To maintain local/remote transparency, the server-side
ORB must call release after marshaling the object ref-
erence and sending it back to the client. Likewise, the client-
side ORB must receive the returned object reference and
unmarshal it into a object reference variable that can later
be passed to release by the client. If the object’s method
does not first duplicate the object reference before re-
turning it, the newly-created object will be destroyed when
the server-side ORB calls release, thus leaving the client
with a “dangling object reference,” which refers to an object
that has been destroyed.

Much of this discussion is specific to Orbix, due to the fact
that Orbix skeleton classes derive from CORBA::Object.
In other ORBs, such as HP ORB Plus, skeletons are kept
separate from the CORBA::Object inheritance hierarchy.
Therefore, calling release on object references does not
result in the destruction of the C++ object that implements
the CORBA object being referenced. In fact, Orbix pro-
vides a CORBA extension called propagateTIEdelete
that enables or disables propagation of delete calls on TIEs
through to the implementation object.

It’s hard to remember when to duplicate and release ob-
ject references and when to delete data received as the re-
sult of an operation. That’s why the OMG IDL C++ map-
ping provides the var data types. These are similar in
function to the ANSI C++ auto ptr type since they are
destroyed they automatically free the resources they man-
age. Storing an object reference returned from an opera-
tion (such as the factory create quoter operation) into a
stack-allocated Quoter var relieves us from having to call
CORBA::releaseon that object reference when we’re fin-
ished with it. As our CORBA C++ examples from the past
few columns have shown, using var types can significantly
ease resource management issues associated with CORBA
programming.

� Lack of portability for concurrent servers: The client-
side interfaces we showed in Section 5.2 use standard
CORBA features and are implemented using the standard
OMG C++ language mapping. This is in contrast to the
concurrent CORBA server, which suffers from several porta-
bility problems in the current CORBA specification. These
problems include (1) lack of a suitable Basic Object Adapter,
(2) lack of a well-specified means to map generated IDL
skeletons with IDL interface class implementations, and (3)
lack of a portable concurrency model. Our previous columns
explored these issues and their potential resolutions in more

detail.

6 Concluding Remarks

In this column, we examined thread-per-session concurrency
model and illustrated how to use it to develop multi-threaded
servers for a distributed stock quote application. These
examples illustrated how object-oriented techniques, C++,
and higher-level abstractions help to simplify programming
and improve extensibility. Our goal is to help you navigate
through the design space of alternative concurrency models.

Using object-oriented design techniques and C++ pro-
gramming features can help to abstract from low-level de-
tails in order to make different models easier to use. As we
showed in this column, useful abstractions for the thread-
per-session concurrency model include thread filters, request
queues, reactive dispatchers, acceptors, handlers, and ses-
sion threads.

As always, if there are any topics that you’d like us to cover,
please send us email at object_connect@ch.hp.com.

References
[1] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,

M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Be-
yond Multiprocessing... Multithreading the SunOS Kernel,” in
Proceedingsof the SummerUSENIX Conference, (San Antonio,
Texas), June 1992.

[2] D. C. Schmidt, “ACE: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[3] D. C. Schmidt, “Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,” C++
Report, vol. 7, November/December 1995.

[4] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[5] Object Management Group, CORBAServices: Common Object
ServicesSpecification,Revised Edition, 95-3-31 ed., Mar. 1994.

[6] R. G. Lavender and D. C. Schmidt, “Active Object: an Object
Behavioral Pattern for Concurrent Programming,” in Pattern
Languages of Program Design (J. O. Coplien, J. Vlissides, and
N. Kerth, eds.), (Reading, MA), Addison-Wesley, 1996.

[7] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1995.

[8] M. Shapiro, “Flexible Bindings for Fine-Grain, Distributed Ob-
jects,” Tech. Rep. Rapport de recherche INRIA 2007, INRIA,
Aug. 1993.

10

