Object I nterconnections

Comparing Alternative Programming Techniques for Multi-threaded CORBA Servers (Column 6)

Douglas C. Schmidt
schmidt@cs.wustl.edu
Department of Computer Science

Washington University, St. Louis, MO 63130

This column will appear in the April 1996 issue of the
SIGS C++ Report magazine.

1 Introduction

Modern OS platformslike Windows N T, and OS/2 and some
flavors of UNIX provide extensive library and system call
support for multi-threaded applications. However, program-
ming multi-threaded applications is hard and programming
distributed multi-threaded applications is even harder. In
particular, devel opers must address sources of accidental and
inherent complexity:

e Accidental complexity of multi-threaded programming
arises from limitations with programming tools and design
techniques. For example, many debuggers can't handle
threaded programs and can't step across host boundaries.
Likewise, agorithmic design [1] makes it hard to reuse ap-
plication components because it tightly couples the structure
of athreaded application to the functionsit performs.

¢ Inherent complexity of multi-threaded programming
arises from challenges such as avoiding deadlock and live-
lock, eliminating race conditions for shared objects, and
minimizing the overhead of context switch, synchronization,
and data movement. An inherently complex aspect of pro-
gramming multi-threaded distributed applications (particu-
larly servers) involves selecting the appropriate concurrency
model, which isthe focus of thiscolumn.

Our previous column examined several ways to program
multi-threaded stock quote servers using C, C++ wrappers,
and two versions of CORBA (HP ORB Plus and MT Or-
bix). In that column, we focused on the thread-per-request
concurrency model, where every incoming request causes a
new thread to be spawned to processit. This column exam-
ines and evaluates another concurrency model: thread-pool,
which pre-spawns a fixed number of threads at start-up to
service al incoming requests. We illustrate this modd by
developing new multi-threaded C, C++, and CORBA imple-
mentations of the stock quote server.

Steve VinosKi
vinoski @ch.hp.com
Hewlett-Packard Company
Chdmsford, MA 01824

4: DEQUEUE &
PROCESS
REQUEST

2: RECEIVE
REQUEST

l

1: REQUEST

Figure 1: Thread-pool Architecture for the Stock Quote
Server

2 The Thread-Pool

M oddl

Concurrency

The thread-pool concurrency model is a variation of the
thread-per-request we examined last column. The main ad-
vantage of thread-per-request isits simplicity, which is why
it's used in many multi-threaded ORBs (such as Orbix and
HP ORB Plus). However, dynamically spawning athread to
handle each new request causes excessive resource utiliza-
tion if the number of requests becomes very large and the
OS resources required to support threads doesn't scale up
efficiently.

The thread-pool model avoids this overhead by pre-
spawning a fixed number of threads at start-up to service

al incoming requests. This strategy amortizes the cost of
thread creation and bounds the use of OS resources. Client
requests can execute concurrently until the number of simul-
taneous requests exceeds the number of threads in the pool.
At thispoint, additional requestsmust be queued (or rejected)
until athread becomes available.

Figure 1 illustrates the main components in this concur-
rency model. These componentsincludeamainthread, are-
guest queue, and a pool of worker threads. The main thread
receives new requests and inserts them into the tail of the
request queue, while the worker threads in the pool remove
requests from the head of the queue and service them. We'll
explore the implementation and use of these componentsin
thiscolumn using C, C++, and CORBA.

3 The Multi-threaded C Thread-Pool
Solution

3.1 CCode

The following exampl e shows a sol ution written using sock-
ets, Solaris threads [2], and C. As in previous columns, we
useaset of C utility functionsto receive stock quote requests
from clients (r ecv_r equest), look up quote information
(I ookup_st ock_pri ce), andreturnthe quotetotheclient
(send.response).

/* WN32 al ready defines this. */
#i f defined (unix)

typedef int HANDLE;

#endif /* unix */

HANDLE create_server_endpoi nt (u_short port);
int recv_request (HANDLE h,
int send_response (HANDLE h,
int handl e_quote (HANDLE);

I ong val ue);

These functionswere first implemented in the October 1995
issue of the C++ Report and were revised to become thread-
safe in the February 1996 issue.

311 Themain() Thread

Our server mai n is similar to the one we presented for the
multi-threaded C solution in our last column. The key dif-
ference isthat we don’t dynamically spawn athread for each
new client request. Instead, we create a thread-safe message
gueue, a pool of threads, and start an event loop in the main
thread, as shown below:

const int DEFAULT_PORT = 12345;
const int DEFAULT_POOL_SI ZE = 4;

int main (int argc, char *argv[])

u_short port =/* Port to listen for connections.
argc > 1 ? atoi (argv[1l]) : DEFAULT_PORT;

int pool_size = /* Size of the thread pool. */
argc > 2 ? atoi (argv[2]) : DEFAULT_POOL_SI ZE;

/* Create a passive-node |istener endpoint. */
HANDLE | i stener = create_server_endpoint (port);

Handl e_Queue handl e_queue;

struct Quote_Request *req);

*/

/* Initialize the thread-safe nessage queue. */
handl e_queue_i nit (&handl e_queue);

/* Initialize the thread pool. */

thread_pool _init (&handl e_queue, pool _size);

/* The event loop for the main thread. */
svc_run (&handl e_queue, listener);
/* NOTREACHED */

The svc_r un function runsthe main thread’s event loop,
asfollows:

voi d svc_run (Handl e_Queue *handl e_queue,
HANDLE | i st ener)

/* Main event |oop. */

for (;;) {
/* Wait to accept a new connection. */
HANDLE handl e = accept (listener, 0, 0);

/* Enqueues the request for processing
by a thread in the pool. */

handl e_queue_i nsert (handl e_queue, handl e);

}
/* NOTREACHED */

Themain thread runs an event loop that continuously accepts
new connections from clients and enqueues each connec-
tionin aHandl e_Queue, which is a thread-safe queue of
HANDLEs. Subsequently, aworker thread in the thread pool
will remove the HANDL E from the queue, extract theclient’s
stock quote request, ook up the result, and return the request
totheclient.

The Handl e_Queue plays several roles in this design.
First, it decouples the main thread from the worker threads.
This alows multiple worker threads to be active simulta-
neously and offloads the responsibility for maintaining the
gueue from kernel-space to user-space. Second, it enforces
flow control between clientsand the server. When there'sno
more room in the queue, the main thread will block, thereby
preventing clients from establishing new connections. New
connection requestswill not be accepted until worker threads
have a chance to catch up and can unblock the main thread.

Each worker thread in the thread pool is spawned by
t hr ead_pool _i ni t function:
voi d
thread_pool _init (Handl e_Queue *handl e_queue,

int pool _size)

int i;

for (i = 0; i < pool_size; i++)

/* Spawn of f separate thread for each worker. */
thr_create

(0, /* Use default thread stack. */

0, /* Use default thread stack size. */

&nor ker _thread, /* Entry point. */

(void *) handl e_queue, /* Entry point arg. */

THR _DETACHED | THR NEW LW, /* Flags. */
0); /* Don't bother returning thread id. */

3.1.2 Theworker_thread() Function

Each newly created thread executes the following event loop
inthewor ker _t hr ead function:

voi d *wor ker _thread (void *arg)

Handl e_Queue *handl e_queue =
(Handl e_Queue *) arg;

/* The event |oop for each worker
thread in the thread pool. */

for (;5) {
HANDLE handl g;

/* Get next avail abl e HANDLE. */
handl e_queue_r enove (handl e_queue, &handl e);

/* Return stock quote to client. */
handl e_quot e (handl e);

/* O ose handle to prevent |eaks. */

cl ose (handle);
/* NOTREACHED */
return O;
}
}

When aworker thread becomes available, it will dequeuethe
next handl e (corresponding to a client request), use it to
look up the value of the stock quote, and return the quote to
theclient.

3.1.3 TheThread-Safe Handle Queue

Most of the complexity in the thread-pool implementation
residesin thethread-safe Handl e_Queue used to exchange
HANDL Es between the event loop running inthe main thread
and the event loops running in the worker threads. We im-
plement the queue as a C st ruct containing an array of
HANDLEs, bookkeeping information, and synchronization
variables:

#def i ne MAX_HANDLES 100

/* Defines the nessage queue data. */
typedef struct Handl e_Queue
{

/* Buffer containing HANDLEs -- nanaged
as a circular queue. */
HANDLE queue_[MAX_HANDLES] ;

/* Keep track of beginning and end of queue. */
u_int head_, tail_;

/* Upper bound on nunber of queued nessages. */
u_i nt max_count _;

/* Count of nessages currently queued. */
u_int count_;

/* Protect queue state from concurrent access. */
mutex_t |ock_;

/* Bl ock consuner threads until
cond_t notenpty_;

/* Bl ock consuner threads until
cond_t notfull_;

queue not full. */

} Handl e_Queue;

The Handl e_Queue data structure is managed by the fol-
lowing C functions. The handl e_queue_i ni t function
initializesinterna queue state:

voi d handl e_queue_init (Handl e_Queue *handl e_queue,
u_i nt max)

queue not enpty. */

handl e_queue->max_count _ = nax,
handl e_queue- >count _ = O;
handl e_queue- >head_ = handl e_queue->tail _ = 0;

/* Initialize synchronization variables that
are local to a single process. */
mut ex_i nit (&handl e_queue- >l ock_,
USYNC_THREAD, 0);

cond_init (&handl e_queue->notenpty_,
USYNC_THREAD, O0);

cond_init (&handl e_queue->notfull _,
USYNC_THREAD, O0);

Three synchronization variables are used to implement
the thread-safe Handl e_Queue: two condition variables
(condt notenpty_ and notful |l) and one mutex
(mut ex_t | ock.). The condition variables enable threads
toinsert and remove HANDL Es to and from the queue concur-
rently. The mutex | ock_ is used by the condition variables
to serialize access to the interna state of the queue, as shown
inthehandl e_queue_i nsert function below:

voi d
handl e_queue_i nsert (Handl e_Queue *handl e_queue,
HANDLE handl e)

{
/* Ensure mutual exclusion for queue state. */
mut ex_| ock (&handl e_queue->l ock_);
/* Wait until there’s roomin the queue. */
whi | e (handl e_queue->count _
== handl e_queue- >max_count)
cond_wait (&handl e_queue->notfull _,
&handl e_queue- >l ock_);
/* Code to insert handle into queue omtted... */
/* Informwaiting threads that queue has a nsg. */
cond_si gnal (&handl e_queue->notenpty_);
/* Rel ease | ock so other threads can proceed. */
mut ex_unl ock (&handl e_queue->l ock_);
}

The handl e_queue.i nsert function is caled by the
thread running the main event loop when it accepts anew re-
quest fromaclient. The client’sHANDLE isinserted into the
queueif there'sroom. Otherwise, themain event loop thread
blocksuntil thenot f ul | _ conditionissignaled. This con-
ditionis signaled when aworker thread dequeues a HANDLE
fromthe queueviathefollowinghandl e_queue_r enove
function:

voi d

handl e_queue_renove (Handl e_Queue *handl e_queue,
HANDLE *first_handl e)

{

mut ex_| ock (&handl e_queue->l ock_);

/* Wit while the queue is enpty. */
whi | e (handl e_queue->count _ == 0)
cond_wai t (&handl e_queue->notenpty_,
&handl e_queue- >l ock_);

/* Code to renove first_handle from
queue omtted... */

/* Informwaiting threads that queue isn't full.
cond_si gnal (&handl e_queue->notfull_);
mut ex_unl ock (&handl e_queue- >l ock_);

*/

The handl e_queue_r enove functionis caled by all the
worker threadsin thethread pool. Thisfunction removesthe
next available HANDL E from thequeue, blocking if necessary
until the queueisno longer empty. After it removesthe next
HANDLE it signals the not f ul I _ condition to inform the
main event |oop thread that there’s more roomin the queue.!

3.2 Evaluatingthe C Thread-Pool Solution

Depending on the degree of host paralelism and client ap-
plication behavior, the new thread-pool solution can improve
the performance of the original thread-per-request approach.
In particular, it will bound the amount of thread resources
used by the server. There are still a number of drawbacks,
however:

e Too much infrastructure upheaval: The implementa-
tion of the thread-pool concurrency model shown above is
an extension of the thread-per-request server from our pre-
vious column. We were able to reuse the core stock quote
routines (such asr ecv_r equest , send_r esponse, and
handl e_quot e). However, the surrounding software ar-
chitecture required many changes. Some changes were rela
tively minor (such as pre-spawning athread-pool rather than a
thread-per-request). Other changes required significant work
(such as implementing the thread-safe Handl e_Queue).

o Lack of flexibilityand reuse: Despiteall theeffort spent
on our thread-safe Handl e_Queue, the current implemen-
tation is tightly coupled to queueing HANDLEs. Closer ex-
amination reveas that the synchronization patterns used in
handl e_queue.i nsert and handl e_queue_r enpove
can be factored out and reused for other types of thread-
safe queue management. Unfortunately, it is hard to do this
flexibly, efficiently, and robustly with the current sol utionbe-
cause C lacks features like parameterized types and method
inlining.

e High connection management overhead: The thread-
pool and thread-per-request server implementations we've
examined have set up and torn down a connection for each
client request. This approach works fine if clients only re-
guest a single stock quote at a time from any given server.
It can become a bottleneck, however, when clients make a
series of requeststo the same server.

One way to fix this problem is to keep each connection
open until the client explicitly closes it down. However,
extending the C solution to implement this caching strategy
is subtle and error-prone. Several “obvious’ solutions will
causerace conditions between themain thread and theworker
threads. For example, thesel ect event demultiplexingcall
can be added to thesvc_r un event loop, as follows:

/1 dobal variable shared by the svc_run()
/1 and worker_thread() nethods.
static fd_set read_hs;

1There are techniques for minimizing the number of calls to
cond_si gnal , which can improve performance significantly by reduc-
ing context switching overhead. These techniques are beyond the scope of
this column and are discussed in [2, 3].

voi d svc_run (Handl e_Queue *handl e_queue,

HANDLE | i st ener)
{
HANDLE naxhpl = listener + 1;
fd_set tenp_hs;

/* fd_sets maintain a set of HANDLEs t hat
select () uses to wait for events. */

FD ZERO (&read_hs);

FD _ZERO (&t enp_hs);

FD SET (listener, & ead_hs);

/* Main event |oop. */

for (;;) {
HANDLE handl e;
/* Demul tiplex connection and data events */
sel ect (nmaxhpl, & enp_hs, 0, 0, 0);

/* Check for stock quote requests and
insert the handle in the queue. */

for (handle = listener + 1;
handl e < maxhpl;
handl e++)

if (FD_I SSET (handl e, &t enp_hs))
handl e_queue_i nsert (handl e_queue, handl e);

/* Check for new connections. */
if (FD_I SSET (listener, & enp_hs)) {
handl e = accept (listener, 0, 0);
FD SET (handl e, &read_hs);
if (maxhpl <= handl e)
maxhpl = handle + 1;

tenp_hs = read_hs;
}
/* NOTREACHED */
}

In addition, the wor ker _t hr ead function would have to
change, aswell (to emphasi ze the differenceswe' ve prefixed
thechangeswith/* 111):

voi d *worker_thread (void *arg)

Handl e_Queue *handl e_queue =
(Handl e_Queue *) arg;

/* The event |oop for each worker
thread in the thread pool. */

for (55) {
HANDLE handl e;

/* Get next avail abl e HANDLE. */
handl e_queue_r enmove (handl e_queue, &handl e);

/* 11l Return stock quote to client. A
return of 0 neans the client shut down. */
if (handl e_quote (handle) == 0) {
/* 11l Cear the bit inread_hs (i.e., the
fd_set) so the main event loop will ignore
this handle until it’'s reconnected. */

FD CLR (handl e, &read_hs);

/* Cose handle to prevent |eaks. */
cl ose (handl e);

}
/* NOTREACHED */
return O;

}
}

Unfortunately, this code contains several subtle race con-
ditions. For instance, more than one thread can access
thef d_set globa variable r ead_hs concurrently, which
can confuse thesvc _r un method'sdemultiplexing strategy.
Likewise, the main thread can insert the same HANDL E into

QUOTE SERVER 2: HANDLE INPUT

: Request
3: ENQUEUE REQUEST

5: DEQUEUE &

PROCESS I
REQUEST
Acc

uote
eptor
2

Figure2: ACE C++ Architecturefor the Thread-Pool Stock
Quote Server

the Handl e_Queue multiple times. Therefore, multiple
worker threads can read from the same HANDL E simultane-
oudly, potentially causing inconsistent results.

Alleviatingthese problemswill forceustorewrite portions
of the server by adding new locks and modifying the existing
handl e_quot e code. Rather than spending any moreeffort
revising the C version, we'll incorporate these changes into
the C++ solution in the next section.

4 The Multi-threaded C++ Wrappers
Thread-Pool Solution

41 C++ Wrapper Code

This section illustrates a C++ thread-pool implementation
based on ACE [4]. The C++ solutionis structured using the
following four classes (shown in Figure 2):

e Quote_Handler: This class interacts with clients by re-
ceiving quote requests, looking up quotes in the database,
and returning responses.

e Quote Acceptor: A factory that implementsthe strategy
for accepting connections from clients, followed by creating
and activating Quot e_Handl er s.

e Reactor: Encapsulates the sel ect and pol | event
demultiplexing system cals with an extensible and
portable callback-driven object-oriented interface. The
React or dispatches the handl e.i nput methods of

Quot e_Accept or and Quot e_Handl er when connec-
tion events and quote requests arrive from clients, respec-
tively.

¢ Request_Queue: Thisthread-safe queue passes client re-
guests from the main thread to the worker threads in the
thread-pool.

The C++ implementation of the thread-pool model is con-
siderably easier to develop than the C solution because
we don’t need to rewrite al the infrastructure code from
scratch. For instance, variations of the Quot e_Handl er,
Quot e_Accept or, and React or have been used in pre-
vious implementations of the quote server in the Octo-
ber 1995 and February 1996 C++ Report. Likewise, the
Request _Queue can beimplemented by using components
available with C++ librarieslike ACE and STL [5]. Below,
we illustrate how these components are used to construct a
multi-threaded quote server based on the C++ thread-pool
concurrency model.

41.1 TheThread-Safe C++ Request Queue

We'll start off by using severa ACE and STL classes to
cregte a thread-safe C++ queue that holds a tuple containing
information necessary to processaclient request. Sincethere
isonly one of these, we'll define it using the Singleton pat-
tern [6]. Doing thisis easy using the following components
provided by STL and ACE:

/1 Forward decl aration.
tenpl ate <cl ass PEER_STREAM>
cl ass Quote_Handl er;

/] Use the STL ‘‘pair’’ conponent to create a
/1 tuple of objects to represent a client request.
typedef pair<Quote_Handl er <SOCK_Streans *,
Quot e_Request *>
Quot e_Tupl €;

/1 An ACE thread-safe queue of Quote_Pairs.
typedef Message_Queue<Quot e_Tupl e> Quot e_Queue;

/1 An ACE Singleton that accesses the Quote_Queue.
typedef Singl eton<Quote_Queue, Mitex> Request _Queue;

The STL pai r class is a template that stores two values.
We use pai r to create a tuple containing pointers to a
Quot e Handl er andaQuot e_Request . Thistuplecon-
tainsthe information necessary to process client requests ef-
ficiently and correctly in the thread-pool model.

The ACE Message_Queue isaflexible, type-safe C++
wrapper that uses templates to generalize the type of data
that can be stored in the C Handl e_Queue implementation
from Section 3:

tenpl ate <class TYPE, size_t MAX_SIZE = 100U>
cl ass Message_Queue

{

public:
int insert (const TYPE &);
int remove (TYPE &);
...

private:

/1 Buffer of TYPE, managed as a queue.

TYPE queue_[MAX_SI ZE] ;
11

The ACE Si ngl et on classisan adapter that turnsordi-
nary classes into Singletons[6], as follows:

tenpl ate <class TYPE, class LOCK = Mutex>
class Singleton

{
publi c:
static TYPE *instance (void) {
/1 Performthe Doubl e-Check to
/1 ensure proper initialization.

if (instance_ == 0) {
Guar d<LOCK> | ock (Il ock_);
if (instance_ == 0)
i nstance_ = new TYPE;

return instance_;

protected:
/1 Singleton instance of TYPE.
static TYPE *instance_;

/1 Lock to ensure serialization.
static LOCK | ock_;

The ACE Si ngl et on adapter avoids subtlerace conditions
by using the Double-Check pattern [7]. This pattern alows
atomic initiaization, regardless of thread initialization or-
der, and eliminates subsequent locking overhead. Using the
ACE Si ngl et on wrapper in conjunction with the ACE
Message_Queue and STL pai r, the thread-pool server
can insert and remove Quot e _Handl er objectsasfollows:

Quote_Tuple gt (quote_handl er, quote_request);
...
Request _Queue: :instance ()->insert (qt);

...
Request _Queue: :instance ()->renove (qt);

The first time that i nsert or renove is caled, the
Si ngl et on: : i nst ance method dynamically alocates
and initiadizes the thread-safe Request _Queue. The Sin-
gleton pattern also minimizes the need for globa objects,
whichisimportant in C++ since the order of initialization of
globa objectsin C++ programs is not well-defined. There-
fore, we' ll usethesame approach for theQuot e _Dat abase
andtheReact or :

/1 Singleton for |ooking up quote val ues.
typedef Singl et on<Quot e_Dat abase> QUOTE_DB;

/1 Singleton event dernultiplexing and di spatching.
typedef Singl et on<React or > REACTOR;

4.1.2 TheQuote Acceptor Class

The Quot e_Accept or class is an implementation of the
Acceptor pattern [8] that creates Quot e_Handl er s to pro-
cessquoterequestsfromclients. Itsimplementationissimilar
to the one shown in our previous column:

typedef Acceptor <Quote_Handl er <SOCK_Streanv,
/1 Quote service.

SOCK_Acceptor> // Passive conn. nech.

Quot e_Acceptor;

The Quote_Acceptor’s strategy for initidlizing a
Quot e_Handl er isdriven by upcallsfromthe React or .
Whenever a new client connects with the server, the
Quot e_Accept or’s handl e_i nput method dynam-
ically crestes a Quote_Handl er, accepts the con-
nection into the handler, and automaticaly cals the
Quot e Handl er: : open method. In the thread-pool im-
plementation, this open method registers itsef with the
React or , aswe show next.

4.1.3 TheQuote Handler Class

The Quot e_Handl er class is responsible for processing
client quoterequests. Itsimplementation differsconsiderably
from the one used for the thread-per-request concurrency
model.

tenpl ate <class STREAM> // I PC interface
cl ass Quote_Handl er
publ i ¢ Svc_Handl er <STREAM>
/1 This ACE base cl ass defines "STREAM peer_;"

{
publi c:
/1 "'l This method is called by the Quote_Acceptor
/!l toinitialize a newy connected Quote_Handl er,
/1 which registers with the Reactor Singleton.
virtual int open (void) {
REACTOR: : i nstance ()->regi ster_handl er
(this, READ MASK);

}

/1 "'l This nmethod is called by the Reactor when
/1 a quote request arrives. It inserts the request
/1
Vi

and the Quote_Handler into the thread-safe queue.

rtual int handle_input (void) {
Quot e_Request *request = new Quote_Request;
if (recv_request (*request) <= 0)
return -1; // Destroy handler...
el se {
Quote_Tuple qt (request, this)

/1 Insert tuple into queue, blocking if full.
Request _Queue: :instance ()->insert (qt);

}

}
/] V!l Static nethod that runs in the worker
/1 thread, dequeuei ng next avail abl e Quote_Request.
static void worker_thread (void) {

f

Quote_Tuple qt;

Il Get next request fromqueue. This
/1 call blocks if queue is enpty.
Request _Queue: : i nstance ()->renove (qt);

Il typeid (qgt->first) == Quote_Handler *
/1 typeid (qgt->second) == Quote_Request *
if (qt->first->handl e_quote
(gt->second) == 0)
/1 dient shut down, so close down too.
qt->first->close ();
del ete qt->second;

}
}
/] '!l Conplete the processing of a request.
int handl e_quote (Quote_Request *req) {

int val ue;

/1 Constructor of macquires | ock.
Read_Guar d<RW Mut ex> m (| ock_);

/1 Lookup stock price via Singleton.
val ue = QUOTE_DB: :i nstance ()->
| ookup_stock_price (*req);

/1 Destructor of mrel eases | ock.

return send_response (val ue);
[* NOTREACHED */
}

/1 O ose down the handl er and rel ease resources.
void close (void) {

/1 d ose down the connection.

t hi s->peer_.close ();

/'l Reference counting onmtted...

/1 Commt suicide...
delete this;

}
...

private:

/'l Ensure mutual exclusion to QUOTE_DB.
RW Mut ex | ock_;

H

Each thread in the pool executesthestaticwor ker _t hr ead
function. Thisfunction runs an event loop that continuously
removes Quot e_Tupl es fromthequeue. Thefi r st field
in this tuple is the Quot e_Handl er associated with the
client and the second field is a client Quot e_Request .
The wor ker _t hr ead usesthefi r st fied to invoke the
handl e_quot e method, which lookups the value of the
desired stock and returnsit to the client.

Whentheclient closesdown, theQuot e_Handl er cleans
up the connection. Even though the client has already closed
the connection, note that the cl ose function must perform
reference counting on itstarget Quot e_Handl er object (to
save space, we' ve omitted thiscode). If thisreference count-
ing were not performed, the cl ose function could prema-
turely del et e theQuot e_Handl er . Thiscould cause the
wor ker _t hr ead functiontoinvokehandl e_quot e ona
danglingf i r st pointer, whichinturnwould probably cause
the server to crash.

Note that both handl e_i nput and wor ker _t hr ead
can block since each manipulates the globa thread-safe
gueue. Thehandl e_i nput method will block if the queue
isfull, whilethewor ker _t hr ead functionwill block if the
gueue is empty.

414 Themain() Server Function

The server nmai n isresponsiblefor creating athread pool and
the thread-safe queue, as follows:

/1 11! Default constants.
const int DEFAULT_PORT = 12345;
const int DEFAULT_POOL_SI ZE = 4;

int main (int argc, char *argv[])

u_short port =
argc > 1 ? atoi (argv[1l]) : DEFAULT_PORT;

int pool_size =// !l Size of the thread pool.
argc > 2 ? atoi (argv[2]) : DEFAULT_POOL_SI ZE;

/1 V!l Create a pool of worker threads to

/1 handl e quote requests fromclients.

Thr ead: : spawn_n
(pool _si ze,
Quot e_Handl er <SOCK_St r ean®: : wor ker _t hr ead,
(void *) 0,

THR_DETACHED | THR_NEW LWP);

/1 '!l Factory that produces Quote_Handl ers.
Quot e_Acceptor acceptor (port, quote_db);

/1 "'l Install Quote_Acceptor with Reactor.
REACTOR: : i nstance ()->regi ster_handl er (&acceptor);

/] "'l Event |oop that dispatches all events as
/'l call backs to appropriate Event_Handl er subcl ass
/1 (such as the Quote_Acceptor or Quote_Handl ers).

for (;;)
REACTOR: : i nstance ()->handl e_events ();

/* NOTREACHED */
return O;

}

First, the ACE method spawn_n [3] is used to cre-
ate a pool of threads. Each thread executes the
Quot e_Handl er: : wor ker _t hr ead function. Next, a
Quot e_Accept or object is created to accept connections

from clients and create Quot e_Handl er objectsto service
them. Finally, the main thread's event loop runs continu-

oudy handling events such as client connections and quote
requests. The server’s event handling is driven by callbacks

fromthe REACTOR SingletontotheQuot e _Accept or and

Quot e_Handl er objects. Sincethisserver usesthethread-
pool model, requests can be handled concurrently by any
available thread.

4.2 Evaluating the C++ Thread-Pool Solution

The C++ implementation solves the drawbacks with the C
version shown in Section 3.2 as follows.

e Lessinfrastructureupheaval: Compared tothechanges
between our C programin our last column and the C program

shown in this column, the changes between the respective

C++ programs are much fewer and more localized. In addi-

tion to creating a thread-safe Request _Queue Singleton,
the primary changes to our C++ thread-pool implementation

are in the Quot e_Handl er class and in our server nai n
routine.
In our last column, our Quote_Handl er:: open

function spawned a thread to handle each incoming re-

guest. Here, open has been changed to register the new
Quot e_Handl er with the React or. Then, when client
requests arrive, the Quot e_Handl er’'s handl e_i nput
method will queue both the request and the handler until a

thread from the pool becomes available to service it. The

only other change required was to make mai n create the

thread-safe queue, the thread pool, and the React or before

entering into itsevent loop.

e Greater flexibility and reuse: Fewer changes were re-
quired in the C++ version than in the C version due to the
encapsul ation of connection handling, queueing, and request

servicing within C++ classes.

e Minimal connection management overhead: The C++

solution keeps each client connection open until the client

closes it down. In addition, by using the thread-safe

Request Queue and the Quot e_Tupl e, we can avoid
the subtle race conditionsthat plagued the earlier C version.

Obvioudly, the C++ solution is not without its drawbacks.
For instance, we've omitted the code that performs refer-
ence counting to ensure that a Quot e_Handl er is not
deleted until all of the Quot e_Request s stored in the
Request _Queue are removed. In addition, the program-
mer must either be able to buy or build a thread-safe queue
class. Developing such aclassisnot trivial, especialy when
portability among different threads packages, OS platforms,
and C++ compilersis required. The Standard Template Li-
brary (STL) is of no help here since the draft C++ standard
doesnot requireitsqueueclassto bethread-safe. Fortunately,
we are able to leverage the ACE components to simplify our
implementation. ACE has been ported to most versions of
UNIX, aswell as the Microsoft Win32 platform.

5 The Multi-threaded
Thread-Pool Solution

CORBA

Thissectionillustrateshow toimplement thethread-pool con-
currency model with MT-Orbix. The solution we describe
below uses the same general design as our C++ implementa-
tion above. It aso uses many of the same components (such
asthe ACE Si ngl et on and Message_Queue classes).

5.1 Implementing Thread-Poolsin M T-Orbix

The My_Quot er implementation class shown below is a-
most identical to the one we used in our previous column
to implement the thread-per-request model. The main dif-
ference is the use of object composition to associate the
My _Quot er implementation class with the Quot er IDL
interface. We'll discuss thisbelow, but first, here’s the com-
plete implementation:
class My_Quoter // Note lack of inheritance!
publi c:

/'l Constructor

My_Quoter (const char *nane);

/!l Returns the current stock val ue.

virtual CORBA::Long get_quote (const char *stock_nane,

/1 Use the Orbix "TIE" approach to associate the
/] CORBA interfaces with our inplenentation.
DEF_TI E_Quoter (M/_Quoter)

As before, it's necessary to protect access to the quote
database with a mutex lock since multiple requests can be
processed simultaneously by threadsin the pool.

5.1.1 Associating the IDL Interface with an Implemen-
tation

If you' ve been following our columns carefully, you' Il notice
that the Orbix implementation of the My _Quot er classin
the May 1995 C++ Report inherited from a skeleton called
Quot er BOAI npl . This class was automatically generated
by the Orbix IDL compiler, i.e.

class My_Quoter
/'l Inherits froman automatically-generated
/1 CORBA skel eton cl ass.
: virtual public Stock:: Quoter BOAl npl

In contrast, our current implementation of My _Quot er does
not inherit from any generated skeleton. Instead, it uses
an alternative provided by Orbix called the“TIE” approach,
whichisbased on object composition rather thaninheritance;

class My_Quoter // Note |lack of inheritance!

o
}s

/1 Use the Orbix "TIE" approach to associate the CORBA

/1 interfaces with our inplenmentation.
DEF_TI E_Quoter (M/_Quoter)

The TIE approach is an example of an “object form” of
the Adapter pattern [6], whereas the inheritance approach
we used last column uses the “class form” of the pattern.
The object form of the Adapter uses delegation to “tie” the
interface of the My _Quot er object implementation class to
the interface expected by the Quot er skeleton generated
by MT-Orbix. When arequest is received, the Orbix Object
Adapter upcallsthe TIE object. Inturn, thisobject dispatches
the call to the My _Quot er object that is associated with the
TIE object.

TheTIE approachismentioned inthe C++ Language Map-

CORBA: : Envi ronnment &) ping chapters of the CORBA 2.0 specification [9]. Not sur-

CORBA: : Long val ue;
{

/1 Constructor of macquires |ock.
Read_CGuar d<RW Mut ex> m (| ock_);

val ue = QUOTE_DB: :i nstance ()->

prisingly, the idea for putting it there originally came from
IONA Technologies, the makers of Orbix. Conforming ORB
implementations are not required to support either the TIE
approach or the inheritance approach, however.?

| ookup_stock_price (stock_nane);

/1 Destructor of mrel eases | ock.

if (value == -1)
ev. exception (new Stock::Invalid_Stock);
return val ue;

}

protected:

/1 Serialize access to database.
RW Mut ex | ock_;

s

5.1.2 The C++ Thread-Safe Request Queue

TheRequest _Queue used by the CORBA implementation
is reused amost wholesale from the C++ implementation
shownin Section 4.1.1:

2The lack of a clear specification of whether CORBA C++ server skele-
tonsuseinheritanceor delegation isanother indication of the CORBA server-
side portability problemswe have described in previous columns.

QUOTE
SERVER

4: ENQUEUE REQUEST
: Request)
Queue :

5: DEQUEUE REQUEST

2: RECEIVE
3: INVOKE
FILTER(S)

Figure3: MT Orbix Architecture for the Thread-Pool Stock
Quote Server

/1 An ACE Singleton that accesses an ACE
/'l thread-safe queue of CORBA Request pointers.
typedef Singl et on<Message_Queue<CORBA: : Request *>,
Mut ex>
Request _Queue,

The primary difference is that we parameterize it with a
CORBA: : Request pointer, rather than a Quot e_Tupl e.
The reason for thisisthat MT-Orbix performs the low-level
demultiplexing, so we don’'t have to do it ourselves.

5.1.3 Thread Filters

Orbix implements a non-standard CORBA extension called
“thread filters.” Each incoming CORBA request is passed
through a chain of filters before being dispatched to itstarget
object implementation. To dispatch an incoming CORBA
request to a waiting thread, a subclass of Thr eadFi | t er
must be defined to overridethei nRequest Pr eMar shal
method. By usinga Thr eadFi | t er,the MT Orbix ORB
and Object Adapter are unaffected by the choice of concur-
rency model selected by a CORBA server.

The following class defines a server-specific thread fil-
ter that handles incoming requests in accordance with the
Thread-Pool concurrency model:

class TP_Thread_Filter : public CORBA:: ThreadFilter

{
publi c:
/'l Intercept request insert at end of nsg_que.

virtual int inRequestPreMarshal (CORBA::Request &,

CORBA: : Envi ronment &) ;

/1 A pool thread uses this as its entry point,
/1 so this nust be a static nethod.
static void *worker_thread (void *);

Orbix callsi nRequest Pr eMar shal method beforethe
incoming request is processed. In the Thread-Pool modd,
requestsareinserted in FIFO order at theend of athread-safe
Message_Queue asthey arrive, asfollows:
TP_Thread_Fil ter::inRequest PreMarshal

(CORBA: : Request &req,
CORBA: : Envi ronment &)

{
/1 WIIl block if queue is full...
Request _Queue::instance ()->insert (&eq);
/1 We'll dispatch the request later.
return -1,

}

Note that this method must return the magic number —1
to indicate to the Orbix Object Adapter that it has spawned a
thread to deal with therequest. ThisvalueinformstheObject
Adapter that it need not perform the operation dispatch itself,
nor should it return the result to the client. These operations
will be performed by one of the threads in the thread-pool,
asshownin Figure 3.

Figure 3 illustrates the role of the TP_Thr ead_Fi | t er
intheMT Orbix architecture for the Thread-Pool stock quote
server. Our quote server must explicitly create an instance of
TP_Thread_Fi | t er togetitinstaled into the Orbix filter
chain:

TP_Thread_Filter tp_filter;

Theconstructor of thisobject automatically insertsthethread-
pool thread filter at the end of thefilter chain.

The wor ker _t hr ead static method serves as the entry
point for each thread in the thread-pool, as shown below:

void *TP_Thread_Filter::worker_thread (void *)

/'l Loop forever, dequeuei ng new Requests,
/1 and dispatching them...

for (53) {
CORBA: : Request *req;

/1 Called by pool threads to dequeue

/1 the next avail able nmessage. WII block
/1 if queue is enpty.

Request _Queue: :instance ()->renove (req);

/1 This call will performthe upcall,

/1 send the reply (if any) and

/1 delete the Request for us...

CORBA: : Or bi x. conti nueThr eadDi spatch (*req);
}

return O;

}

All threads wait for requests to arrive on the head of the
message queue kept with the thread filter. The MT-Orbix
method cont i nueThr eadDi spat ch will continue pro-
cessing the request until it sends areply to the client. At this

point, the thread will loop back to retrieve the next CORBA
request. If thereisno request available the thread will block
until anew request arrives on the message queue. Likewise,
if al the threads are busy, the queue will continue growing
until it reaches itshigh-water mark, at which point the thread
running thei nRequest Pr eMar shal method will block.
Thisrelatively crudeform of flow control wasalso usedinthe
C and C++ implementations shown earlier. Naturally, robust
servers should be programmed more carefully to detect and
handle queue overflow conditions.

Themain server programimplementsthe Thread-Pool con-
currency model by spawning off pool _si ze number of
threads, as follows:

const int DEFAULT_POOL_SI ZE = 4;

int main (int argc, char *argv[])
/1 Initialize the factory inplenentation.
My_Quot er _var my_quoter =

new TI E_My/_Quoter (My_Quoter) (new My_Quoter);

int pool_size = argc == 1 ? DEFAULT_POCL_SI ZE
: atoi (argv[1]);

/]l Create a pool of worker threads to handl e
/1 quote requests fromclients.

Thread: : spawn_n (pool _si ze,
Thread_Filter::worker_thread,
(void *) 0,
THR_DETACHED | THR_NEW LWP);

Wait for work to do in the main thread
(which is also the thread that shepherds
CORBA requests through TP_Thread_Filter).
TRY {
CORBA: : Orbi x.inpl _is_ready ("Quoter",

1T X);

/1
/1
/1

} CATCHANY {
cerr << | T_X << endl;
} ENDTRY

return O;

When the Quot e server first starts up, it creates a
My_Quot er object to service client quote requests. It then
creates a pool of threads to service incoming requests us-
ing the ACE spawn_n method. Finaly, the main server
thread calls Or bi x. i npl 4 s_ready to notify Orbix that
theQuot er implementationisready to servicerequests. The
main thread is responsible for sheparding CORBA requests
through thefilter chaintothe TP_Thread_Fi | t er.

Finaly, the object we initialy crested is implicitly de-
stroyed by thedestructor of theMy _Quot er _var . TheOMG
C++ Mapping providesfor each IDL interfacea” _var " class
that can manage object references (“_pt r " types) of that in-
terface type. If wedidn't useaMy_Quot er var type here,
our code would have to manually duplicate and release the
object as required. By using a My_Quot er _var, we avoid
such resource management.

10

5.2 EvaluatingtheM T-Or bix Thread-Pool So-
[ution

The following benefits arise from using M T-Orbix to imple-
ment the thread-pool concurrency model:

¢ Almost no infrastructure upheaval: The implementa
tion of the MT-Orbix thread-pool concurrency model shown
aboveisamostidentical tothethread-per-request server from
our previous column. The primary changes we added were
cosmetic (such as using Singletons rather than global vari-
ables and using the object compositionto “tie” the Quot er
skeleton with the My _Quot er implementation rather than
using inheritance). The ability to quickly and easily modify
applicationsin this manner allows them to be rapidly tuned
and redepl oyed when necessary.

e Increased flexibilityandreuse: Theflexibility and reuse
of the MT-Orbix solution is similar to the ACE C++ solu-
tion. Themain differenceisthat MT-Orbix isresponsiblefor
most of the low-level demultiplexing and concurrency con-
trol that we had to implement by hand in our C++ solution.
In particular, MT-Orbix hides al its interna synchroniza-
tion mechanisms from the server programmer. Thus, we are
only responsible for locking server-level state (such as the
Request _Queue).

e Optimized connection management overhead: MT-
Orbix can perform certain optimizations (such as caching
connections in a thread-safe manner) without requiring any
programmer intervention. It also separates the concerns of
application devel opment from those involving the choice of
suitabletransportsand protocol sfor the application. In other
words, using an ORB allows an application to be devel oped
independently of the underlying communication transports
and protocols.

The primary drawback, of course, isthat the mechanisms
used by MT-Orbix are not standardized across the industry.
In general, al the multi-threading techniques we discuss in
this column aren’'t standardized yet, and in particular the
TP_Thread_Fi | t er approach shown aboveis proprietary
to Orbix. The fact that the CORBA solution shown here
is not portable is yet another indication of the server-side
portability problems with CORBA that we've discussed in
previous columns,

Despite these issues, it is important to note that the con-
currency models, patterns, and techniques we discussed in
this article are reusable. Our god isto help you navigate
through the space of design aternatives. We hopethat you'll
be able to apply them to your projects, regardless of whether
you program in CORBA, DCE, Network OLE, ACE, or any
other distributed computing toolkit.

6 Concluding Remarks
In this column, we examined the thread-pool concurrency

model and illustrated how to useit to devel op multi-threaded
servers for a distributed stock quote application. This

example illustrated how object-oriented techniques, C++,
CORBA, and higher-level abstractionslikethe Singleton pat-
tern help to simplify programming and improve extensibility.

Our next column will explore yet another concurrency
model: thread-per-session. This model is supported by a
number of CORBA implementations including MT-Orbix
and ORBdine. Having a choice of concurrency models
can hel p devel opers meet the performance, functionality, and
mai ntenance requirements of their applications. The key to
success, of course, liesin thoroughly understandingthetrade-
offs between different models. As aways, if there are any
topics that you'd like us to cover, please send us email a
obj ect _connect @h. hp. com

Thanks to Prashant Jain, Tim Harrison, and Ron Resnick
for comments on this column.

References

[1] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2"¢ Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[2] J.Eykholt, S.Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Be-
yond Multiprocessing... Multithreading the SUnOS Kernel,” in
Proceedingsof the Summer USENIX Conference, (San Antonio,
Texas), June 1992.

[3] D.C. Schmidt, “An OO Encapsulation of Lightweight OS Con-
currency Mechanismsin the ACE Toolkit,” Tech. Rep. WUCS-
95-31, Washington University, St. Louis, September 1995.

[4] D. C. Schmidt, “ASX: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6'" USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[5] A. Stepanov and M. Lee, “The Standard Template Library,”
Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April
1994,

[6] E.Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1994.

[7] T.HarrisonandD. C. Schmidt, “ Patternsfor Reducing Locking
Overhead in Multi-threaded Programs,” in Submitted to the 3™¢

Pattern Languages of Programming Conference, September
1996.

[8] D. C. Schmidt, “Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,” C++
Report, vol. 7, November/December 1995.

[9] Object Management Group, The Common Object Request Bro-
ker: Architectureand Specification, 2.0 (draft) ed., May 1995.

11

