
Object Interconnections

Comparing Alternative Programming Techniques for Multi-threaded CORBA Servers (Column 6)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@ch.hp.com

Department of Computer Science Hewlett-Packard Company
Washington University, St. Louis, MO 63130 Chelmsford, MA 01824

This column will appear in the April 1996 issue of the
SIGS C++ Report magazine.

1 Introduction

Modern OS platforms like Windows NT, and OS/2 and some
flavors of UNIX provide extensive library and system call
support for multi-threaded applications. However, program-
ming multi-threaded applications is hard and programming
distributed multi-threaded applications is even harder. In
particular, developers must address sources of accidental and
inherent complexity:

� Accidental complexity of multi-threaded programming
arises from limitations with programming tools and design
techniques. For example, many debuggers can’t handle
threaded programs and can’t step across host boundaries.
Likewise, algorithmic design [1] makes it hard to reuse ap-
plication components because it tightly couples the structure
of a threaded application to the functions it performs.

� Inherent complexity of multi-threaded programming
arises from challenges such as avoiding deadlock and live-
lock, eliminating race conditions for shared objects, and
minimizing the overhead of context switch, synchronization,
and data movement. An inherently complex aspect of pro-
gramming multi-threaded distributed applications (particu-
larly servers) involves selecting the appropriate concurrency
model, which is the focus of this column.

Our previous column examined several ways to program
multi-threaded stock quote servers using C, C++ wrappers,
and two versions of CORBA (HP ORB Plus and MT Or-
bix). In that column, we focused on the thread-per-request
concurrency model, where every incoming request causes a
new thread to be spawned to process it. This column exam-
ines and evaluates another concurrency model: thread-pool,
which pre-spawns a fixed number of threads at start-up to
service all incoming requests. We illustrate this model by
developing new multi-threaded C, C++, and CORBA imple-
mentations of the stock quote server.

QUOTE SERVER 3:3: ENQUEUE ENQUEUE

REQUESTREQUEST

5:5: RETURN QUOTE VALUE RETURN QUOTE VALUE

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT CLIENTCLIENT

: Request: Request
QueueQueue

4:4: DEQUEUE DEQUEUE &&
PROCESSPROCESS

REQUESTREQUEST

2:2: RECEIVE RECEIVE

REQUESTREQUEST

1:1: REQUEST REQUEST

QUOTEQUOTE

workerworker
threadthread

workerworker
threadthread

workerworker
threadthread

mainmain
threadthread

Figure 1: Thread-pool Architecture for the Stock Quote
Server

2 The Thread-Pool Concurrency
Model

The thread-pool concurrency model is a variation of the
thread-per-request we examined last column. The main ad-
vantage of thread-per-request is its simplicity, which is why
it’s used in many multi-threaded ORBs (such as Orbix and
HP ORB Plus). However, dynamically spawning a thread to
handle each new request causes excessive resource utiliza-
tion if the number of requests becomes very large and the
OS resources required to support threads doesn’t scale up
efficiently.

The thread-pool model avoids this overhead by pre-
spawning a fixed number of threads at start-up to service

1

all incoming requests. This strategy amortizes the cost of
thread creation and bounds the use of OS resources. Client
requests can execute concurrently until the number of simul-
taneous requests exceeds the number of threads in the pool.
At this point, additional requests must be queued (or rejected)
until a thread becomes available.

Figure 1 illustrates the main components in this concur-
rency model. These components include a main thread, a re-
quest queue, and a pool of worker threads. The main thread
receives new requests and inserts them into the tail of the
request queue, while the worker threads in the pool remove
requests from the head of the queue and service them. We’ll
explore the implementation and use of these components in
this column using C, C++, and CORBA.

3 The Multi-threaded C Thread-Pool
Solution

3.1 C Code

The following example shows a solution written using sock-
ets, Solaris threads [2], and C. As in previous columns, we
use a set of C utility functions to receive stock quote requests
from clients (recv request), look up quote information
(lookup stock price), and return the quote to the client
(send response).

/* WIN32 already defines this. */
#if defined (unix)
typedef int HANDLE;
#endif /* unix */

HANDLE create_server_endpoint (u_short port);
int recv_request (HANDLE h, struct Quote_Request *req);
int send_response (HANDLE h, long value);
int handle_quote (HANDLE);

These functions were first implemented in the October 1995
issue of the C++ Report and were revised to become thread-
safe in the February 1996 issue.

3.1.1 The main() Thread

Our server main is similar to the one we presented for the
multi-threaded C solution in our last column. The key dif-
ference is that we don’t dynamically spawn a thread for each
new client request. Instead, we create a thread-safe message
queue, a pool of threads, and start an event loop in the main
thread, as shown below:

const int DEFAULT_PORT = 12345;
const int DEFAULT_POOL_SIZE = 4;

int main (int argc, char *argv[])
{
u_short port = /* Port to listen for connections. */
argc > 1 ? atoi (argv[1]) : DEFAULT_PORT;

int pool_size = /* Size of the thread pool. */
argc > 2 ? atoi (argv[2]) : DEFAULT_POOL_SIZE;

/* Create a passive-mode listener endpoint. */
HANDLE listener = create_server_endpoint (port);

Handle_Queue handle_queue;

/* Initialize the thread-safe message queue. */
handle_queue_init (&handle_queue);

/* Initialize the thread pool. */
thread_pool_init (&handle_queue, pool_size);

/* The event loop for the main thread. */
svc_run (&handle_queue, listener);
/* NOTREACHED */

}

The svc run function runs the main thread’s event loop,
as follows:

void svc_run (Handle_Queue *handle_queue,
HANDLE listener)

{
/* Main event loop. */

for (;;) {
/* Wait to accept a new connection. */
HANDLE handle = accept (listener, 0, 0);

/* Enqueues the request for processing
by a thread in the pool. */

handle_queue_insert (handle_queue, handle);
}
/* NOTREACHED */

}

The main thread runs an event loop that continuously accepts
new connections from clients and enqueues each connec-
tion in a Handle Queue, which is a thread-safe queue of
HANDLEs. Subsequently, a worker thread in the thread pool
will remove the HANDLE from the queue, extract the client’s
stock quote request, look up the result, and return the request
to the client.

The Handle Queue plays several roles in this design.
First, it decouples the main thread from the worker threads.
This allows multiple worker threads to be active simulta-
neously and offloads the responsibility for maintaining the
queue from kernel-space to user-space. Second, it enforces
flow control between clients and the server. When there’s no
more room in the queue, the main thread will block, thereby
preventing clients from establishing new connections. New
connection requests will not be accepted until worker threads
have a chance to catch up and can unblock the main thread.

Each worker thread in the thread pool is spawned by
thread pool init function:

void
thread_pool_init (Handle_Queue *handle_queue,

int pool_size)
{
int i;
for (i = 0; i < pool_size; i++)

/* Spawn off separate thread for each worker. */
thr_create

(0, /* Use default thread stack. */
0, /* Use default thread stack size. */
&worker_thread, /* Entry point. */
(void *) handle_queue, /* Entry point arg. */
THR_DETACHED | THR_NEW_LWP, /* Flags. */
0); /* Don’t bother returning thread id. */

}
}

3.1.2 The worker thread() Function

Each newly created thread executes the following event loop
in the worker thread function:

2

void *worker_thread (void *arg)
{
Handle_Queue *handle_queue =
(Handle_Queue *) arg;

/* The event loop for each worker
thread in the thread pool. */

for (;;) {
HANDLE handle;

/* Get next available HANDLE. */
handle_queue_remove (handle_queue, &handle);

/* Return stock quote to client. */
handle_quote (handle);

/* Close handle to prevent leaks. */
close (handle);
/* NOTREACHED */
return 0;

}
}

When a worker thread becomes available, it will dequeue the
next handle (corresponding to a client request), use it to
look up the value of the stock quote, and return the quote to
the client.

3.1.3 The Thread-Safe Handle Queue

Most of the complexity in the thread-pool implementation
resides in the thread-safe Handle Queue used to exchange
HANDLEs between the event loop running in the main thread
and the event loops running in the worker threads. We im-
plement the queue as a C struct containing an array of
HANDLEs, bookkeeping information, and synchronization
variables:

#define MAX_HANDLES 100

/* Defines the message queue data. */
typedef struct Handle_Queue
{
/* Buffer containing HANDLEs -- managed

as a circular queue. */
HANDLE queue_[MAX_HANDLES];

/* Keep track of beginning and end of queue. */
u_int head_, tail_;

/* Upper bound on number of queued messages. */
u_int max_count_;

/* Count of messages currently queued. */
u_int count_;

/* Protect queue state from concurrent access. */
mutex_t lock_;

/* Block consumer threads until queue not empty. */
cond_t notempty_;

/* Block consumer threads until queue not full. */
cond_t notfull_;

} Handle_Queue;

The Handle Queue data structure is managed by the fol-
lowing C functions. The handle queue init function
initializes internal queue state:

void handle_queue_init (Handle_Queue *handle_queue,
u_int max)

{
handle_queue->max_count_ = max;
handle_queue->count_ = 0;
handle_queue->head_ = handle_queue->tail_ = 0;

/* Initialize synchronization variables that
are local to a single process. */

mutex_init (&handle_queue->lock_,
USYNC_THREAD, 0);

cond_init (&handle_queue->notempty_,
USYNC_THREAD, 0);

cond_init (&handle_queue->notfull_,
USYNC_THREAD, 0);

}

Three synchronization variables are used to implement
the thread-safe Handle Queue: two condition variables
(cond t notempty and notfull) and one mutex
(mutex t lock). The condition variables enable threads
to insert and removeHANDLEs to and from the queue concur-
rently. The mutex lock is used by the condition variables
to serialize access to the internal state of the queue, as shown
in the handle queue insert function below:

void
handle_queue_insert (Handle_Queue *handle_queue,

HANDLE handle)
{
/* Ensure mutual exclusion for queue state. */
mutex_lock (&handle_queue->lock_);

/* Wait until there’s room in the queue. */
while (handle_queue->count_

== handle_queue->max_count_)
cond_wait (&handle_queue->notfull_,

&handle_queue->lock_);

/* Code to insert handle into queue omitted... */

/* Inform waiting threads that queue has a msg. */
cond_signal (&handle_queue->notempty_);

/* Release lock so other threads can proceed. */
mutex_unlock (&handle_queue->lock_);

}

The handle queue insert function is called by the
thread running the main event loop when it accepts a new re-
quest from a client. The client’s HANDLE is inserted into the
queue if there’s room. Otherwise, the main event loop thread
blocks until the notfull condition is signaled. This con-
dition is signaled when a worker thread dequeues a HANDLE
from the queue via the followinghandle queue remove
function:

void
handle_queue_remove (Handle_Queue *handle_queue,

HANDLE *first_handle)
{
mutex_lock (&handle_queue->lock_);

/* Wait while the queue is empty. */
while (handle_queue->count_ == 0)

cond_wait (&handle_queue->notempty_,
&handle_queue->lock_);

/* Code to remove first_handle from
queue omitted... */

/* Inform waiting threads that queue isn’t full. */
cond_signal (&handle_queue->notfull_);
mutex_unlock (&handle_queue->lock_);

}

3

The handle queue remove function is called by all the
worker threads in the thread pool. This function removes the
next availableHANDLE from the queue, blocking if necessary
until the queue is no longer empty. After it removes the next
HANDLE it signals the notfull condition to inform the
main event loop thread that there’s more room in the queue.1

3.2 Evaluating the C Thread-Pool Solution

Depending on the degree of host parallelism and client ap-
plication behavior, the new thread-pool solution can improve
the performance of the original thread-per-request approach.
In particular, it will bound the amount of thread resources
used by the server. There are still a number of drawbacks,
however:

� Too much infrastructure upheaval: The implementa-
tion of the thread-pool concurrency model shown above is
an extension of the thread-per-request server from our pre-
vious column. We were able to reuse the core stock quote
routines (such as recv request, send response, and
handle quote). However, the surrounding software ar-
chitecture required many changes. Some changes were rela-
tively minor (such as pre-spawning a thread-pool rather than a
thread-per-request). Other changes required significant work
(such as implementing the thread-safe Handle Queue).

�Lack of flexibility and reuse: Despite all the effort spent
on our thread-safe Handle Queue, the current implemen-
tation is tightly coupled to queueing HANDLEs. Closer ex-
amination reveals that the synchronization patterns used in
handle queue insert and handle queue remove
can be factored out and reused for other types of thread-
safe queue management. Unfortunately, it is hard to do this
flexibly, efficiently, and robustly with the current solutionbe-
cause C lacks features like parameterized types and method
inlining.

� High connection management overhead: The thread-
pool and thread-per-request server implementations we’ve
examined have set up and torn down a connection for each
client request. This approach works fine if clients only re-
quest a single stock quote at a time from any given server.
It can become a bottleneck, however, when clients make a
series of requests to the same server.

One way to fix this problem is to keep each connection
open until the client explicitly closes it down. However,
extending the C solution to implement this caching strategy
is subtle and error-prone. Several “obvious” solutions will
cause race conditions between the main thread and the worker
threads. For example, theselect event demultiplexingcall
can be added to the svc run event loop, as follows:

// Global variable shared by the svc_run()
// and worker_thread() methods.
static fd_set read_hs;

1There are techniques for minimizing the number of calls to
cond signal, which can improve performance significantly by reduc-
ing context switching overhead. These techniques are beyond the scope of
this column and are discussed in [2, 3].

void svc_run (Handle_Queue *handle_queue,
HANDLE listener)

{
HANDLE maxhp1 = listener + 1;
fd_set temp_hs;

/* fd_sets maintain a set of HANDLEs that
select () uses to wait for events. */

FD_ZERO (&read_hs);
FD_ZERO (&temp_hs);
FD_SET (listener, &read_hs);

/* Main event loop. */

for (;;) {
HANDLE handle;
/* Demultiplex connection and data events */
select (maxhp1, &temp_hs, 0, 0, 0);

/* Check for stock quote requests and
insert the handle in the queue. */

for (handle = listener + 1;
handle < maxhp1;
handle++)

if (FD_ISSET (handle, &temp_hs))
handle_queue_insert (handle_queue, handle);

/* Check for new connections. */
if (FD_ISSET (listener, &temp_hs)) {

handle = accept (listener, 0, 0);
FD_SET (handle, &read_hs);
if (maxhp1 <= handle)

maxhp1 = handle + 1;
}
temp_hs = read_hs;

}
/* NOTREACHED */

}

In addition, the worker thread function would have to
change, as well (to emphasize the differences we’ve prefixed
the changes with /* !!!):

void *worker_thread (void *arg)
{
Handle_Queue *handle_queue =

(Handle_Queue *) arg;

/* The event loop for each worker
thread in the thread pool. */

for (;;) {
HANDLE handle;

/* Get next available HANDLE. */
handle_queue_remove (handle_queue, &handle);

/* !!! Return stock quote to client. A
return of 0 means the client shut down. */

if (handle_quote (handle) == 0) {
/* !!! Clear the bit in read_hs (i.e., the

fd_set) so the main event loop will ignore
this handle until it’s reconnected. */

FD_CLR (handle, &read_hs);

/* Close handle to prevent leaks. */
close (handle);

}
/* NOTREACHED */
return 0;

}
}

Unfortunately, this code contains several subtle race con-
ditions. For instance, more than one thread can access
the fd set global variable read hs concurrently, which
can confuse the svc run method’s demultiplexing strategy.
Likewise, the main thread can insert the same HANDLE into

4

: Reactor: Reactor

QUOTE SERVER

: Quote: Quote
AcceptorAcceptor

1:1: REQUEST REQUEST

QUOTEQUOTE

2:2: HANDLE INPUT HANDLE INPUT

3:3: ENQUEUE REQUEST ENQUEUE REQUEST

: Quote: Quote
HandlerHandler

6:6: RETURN QUOTE VALUE RETURN QUOTE VALUE

SERVERSERVER

CLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

: Request: Request
QueueQueue

: Quote: Quote
HandlerHandler

: Quote: Quote
HandlerHandler

5:5: DEQUEUE DEQUEUE &&
PROCESSPROCESS

REQUESTREQUEST

workerworker
threadthread

workerworker
threadthread

workerworker
threadthread

workerworker
threadthread

Figure 2: ACE C++ Architecture for the Thread-Pool Stock
Quote Server

the Handle Queue multiple times. Therefore, multiple
worker threads can read from the same HANDLE simultane-
ously, potentially causing inconsistent results.

Alleviating these problems will force us to rewrite portions
of the server by adding new locks and modifying the existing
handle quote code. Rather than spending any more effort
revising the C version, we’ll incorporate these changes into
the C++ solution in the next section.

4 The Multi-threaded C++ Wrappers
Thread-Pool Solution

4.1 C++ Wrapper Code

This section illustrates a C++ thread-pool implementation
based on ACE [4]. The C++ solution is structured using the
following four classes (shown in Figure 2):

� Quote Handler: This class interacts with clients by re-
ceiving quote requests, looking up quotes in the database,
and returning responses.

�Quote Acceptor: A factory that implements the strategy
for accepting connections from clients, followed by creating
and activating Quote Handlers.

� Reactor: Encapsulates the select and poll event
demultiplexing system calls with an extensible and
portable callback-driven object-oriented interface. The
Reactor dispatches the handle input methods of

Quote Acceptor and Quote Handler when connec-
tion events and quote requests arrive from clients, respec-
tively.

�Request Queue: This thread-safe queue passes client re-
quests from the main thread to the worker threads in the
thread-pool.

The C++ implementation of the thread-pool model is con-
siderably easier to develop than the C solution because
we don’t need to rewrite all the infrastructure code from
scratch. For instance, variations of the Quote Handler,
Quote Acceptor, and Reactor have been used in pre-
vious implementations of the quote server in the Octo-
ber 1995 and February 1996 C++ Report. Likewise, the
Request Queue can be implemented by using components
available with C++ libraries like ACE and STL [5]. Below,
we illustrate how these components are used to construct a
multi-threaded quote server based on the C++ thread-pool
concurrency model.

4.1.1 The Thread-Safe C++ Request Queue

We’ll start off by using several ACE and STL classes to
create a thread-safe C++ queue that holds a tuple containing
information necessary to process a client request. Since there
is only one of these, we’ll define it using the Singleton pat-
tern [6]. Doing this is easy using the following components
provided by STL and ACE:

// Forward declaration.
template <class PEER_STREAM>
class Quote_Handler;

// Use the STL ‘‘pair’’ component to create a
// tuple of objects to represent a client request.
typedef pair<Quote_Handler<SOCK_Stream> *,

Quote_Request *>
Quote_Tuple;

// An ACE thread-safe queue of Quote_Pairs.
typedef Message_Queue<Quote_Tuple> Quote_Queue;

// An ACE Singleton that accesses the Quote_Queue.
typedef Singleton<Quote_Queue, Mutex> Request_Queue;

The STL pair class is a template that stores two values.
We use pair to create a tuple containing pointers to a
Quote Handler and aQuote Request. This tuple con-
tains the information necessary to process client requests ef-
ficiently and correctly in the thread-pool model.

The ACE Message Queue is a flexible, type-safe C++
wrapper that uses templates to generalize the type of data
that can be stored in the C Handle Queue implementation
from Section 3:

template <class TYPE, size_t MAX_SIZE = 100U>
class Message_Queue
{
public:
int insert (const TYPE &);
int remove (TYPE &);
// ...

private:

// Buffer of TYPE, managed as a queue.

5

TYPE queue_[MAX_SIZE];

// ...

The ACE Singleton class is an adapter that turns ordi-
nary classes into Singletons [6], as follows:

template <class TYPE, class LOCK = Mutex>
class Singleton
{
public:
static TYPE *instance (void) {
// Perform the Double-Check to
// ensure proper initialization.
if (instance_ == 0) {
Guard<LOCK> lock (lock_);
if (instance_ == 0)
instance_ = new TYPE;

}
return instance_;

}

protected:
// Singleton instance of TYPE.
static TYPE *instance_;

// Lock to ensure serialization.
static LOCK lock_;

};

The ACE Singleton adapter avoids subtle race conditions
by using the Double-Check pattern [7]. This pattern allows
atomic initialization, regardless of thread initialization or-
der, and eliminates subsequent locking overhead. Using the
ACE Singleton wrapper in conjunction with the ACE
Message Queue and STL pair, the thread-pool server
can insert and remove Quote Handler objects as follows:

Quote_Tuple qt (quote_handler, quote_request);
// ...
Request_Queue::instance ()->insert (qt);

// ...
Request_Queue::instance ()->remove (qt);

The first time that insert or remove is called, the
Singleton::instance method dynamically allocates
and initializes the thread-safe Request Queue. The Sin-
gleton pattern also minimizes the need for global objects,
which is important in C++ since the order of initialization of
global objects in C++ programs is not well-defined. There-
fore, we’ll use the same approach for theQuote Database
and the Reactor:

// Singleton for looking up quote values.
typedef Singleton<Quote_Database> QUOTE_DB;

// Singleton event demultiplexing and dispatching.
typedef Singleton<Reactor> REACTOR;

4.1.2 The Quote Acceptor Class

The Quote Acceptor class is an implementation of the
Acceptor pattern [8] that creates Quote Handlers to pro-
cess quote requests from clients. Its implementation is similar
to the one shown in our previous column:

typedef Acceptor <Quote_Handler <SOCK_Stream>,
// Quote service.
SOCK_Acceptor> // Passive conn. mech.

Quote_Acceptor;

The Quote Acceptor’s strategy for initializing a
Quote Handler is driven by upcalls from the Reactor.
Whenever a new client connects with the server, the
Quote Acceptor’s handle input method dynam-
ically creates a Quote Handler, accepts the con-
nection into the handler, and automatically calls the
Quote Handler::open method. In the thread-pool im-
plementation, this open method registers itself with the
Reactor, as we show next.

4.1.3 The Quote Handler Class

The Quote Handler class is responsible for processing
client quote requests. Its implementation differs considerably
from the one used for the thread-per-request concurrency
model.

template <class STREAM> // IPC interface
class Quote_Handler
: public Svc_Handler<STREAM>

// This ACE base class defines "STREAM peer_;"
{
public:
// !!! This method is called by the Quote_Acceptor
// to initialize a newly connected Quote_Handler,
// which registers with the Reactor Singleton.
virtual int open (void) {

REACTOR::instance ()->register_handler
(this, READ_MASK);

}

// !!! This method is called by the Reactor when
// a quote request arrives. It inserts the request
// and the Quote_Handler into the thread-safe queue.
virtual int handle_input (void) {

Quote_Request *request = new Quote_Request;
if (recv_request (*request) <= 0)

return -1; // Destroy handler...
else {

Quote_Tuple qt (request, this)

// Insert tuple into queue, blocking if full.
Request_Queue::instance ()->insert (qt);

}
}

// !!! Static method that runs in the worker
// thread, dequeueing next available Quote_Request.
static void worker_thread (void) {

for (;;) {
Quote_Tuple qt;

// Get next request from queue. This
// call blocks if queue is empty.
Request_Queue::instance ()->remove (qt);

// typeid (qt->first) == Quote_Handler *
// typeid (qt->second) == Quote_Request *
if (qt->first->handle_quote

(qt->second) == 0)
// Client shut down, so close down too.
qt->first->close ();

delete qt->second;
}

}

// !!! Complete the processing of a request.
int handle_quote (Quote_Request *req) {

int value;
{

// Constructor of m acquires lock.
Read_Guard<RW_Mutex> m (lock_);

// Lookup stock price via Singleton.
value = QUOTE_DB::instance ()->

lookup_stock_price (*req);

6

// Destructor of m releases lock.
}
return send_response (value);
/* NOTREACHED */

}

// Close down the handler and release resources.
void close (void) {
// Close down the connection.
this->peer_.close ();

// Reference counting omitted...

// Commit suicide...
delete this;

}
// ...

private:
// Ensure mutual exclusion to QUOTE_DB.
RW_Mutex lock_;

};

Each thread in the pool executes the staticworker thread
function. This function runs an event loop that continuously
removes Quote Tuples from the queue. The first field
in this tuple is the Quote Handler associated with the
client and the second field is a client Quote Request.
The worker thread uses the first field to invoke the
handle quote method, which lookups the value of the
desired stock and returns it to the client.

When the client closes down, theQuote Handler cleans
up the connection. Even though the client has already closed
the connection, note that the close function must perform
reference counting on its target Quote Handler object (to
save space, we’ve omitted this code). If this reference count-
ing were not performed, the close function could prema-
turely delete the Quote Handler. This could cause the
worker thread function to invokehandle quote on a
danglingfirst pointer, which in turn would probably cause
the server to crash.

Note that both handle input and worker thread
can block since each manipulates the global thread-safe
queue. The handle input method will block if the queue
is full, while the worker thread function will block if the
queue is empty.

4.1.4 The main() Server Function

The server main is responsible for creating a thread pool and
the thread-safe queue, as follows:

// !!! Default constants.
const int DEFAULT_PORT = 12345;
const int DEFAULT_POOL_SIZE = 4;

int main (int argc, char *argv[])
{
u_short port =
argc > 1 ? atoi (argv[1]) : DEFAULT_PORT;

int pool_size = // !!! Size of the thread pool.
argc > 2 ? atoi (argv[2]) : DEFAULT_POOL_SIZE;

// !!! Create a pool of worker threads to
// handle quote requests from clients.
Thread::spawn_n
(pool_size,
Quote_Handler<SOCK_Stream>::worker_thread,
(void *) 0,

THR_DETACHED | THR_NEW_LWP);

// !!! Factory that produces Quote_Handlers.
Quote_Acceptor acceptor (port, quote_db);

// !!! Install Quote_Acceptor with Reactor.
REACTOR::instance ()->register_handler (&acceptor);

// !!! Event loop that dispatches all events as
// callbacks to appropriate Event_Handler subclass
// (such as the Quote_Acceptor or Quote_Handlers).

for (;;)
REACTOR::instance ()->handle_events ();

/* NOTREACHED */
return 0;

}

First, the ACE method spawn n [3] is used to cre-
ate a pool of threads. Each thread executes the
Quote Handler::worker thread function. Next, a
Quote Acceptor object is created to accept connections
from clients and create Quote Handler objects to service
them. Finally, the main thread’s event loop runs continu-
ously handling events such as client connections and quote
requests. The server’s event handling is driven by callbacks
from theREACTOR Singleton to theQuote Acceptor and
Quote Handler objects. Since this server uses the thread-
pool model, requests can be handled concurrently by any
available thread.

4.2 Evaluating the C++ Thread-Pool Solution

The C++ implementation solves the drawbacks with the C
version shown in Section 3.2 as follows.

�Less infrastructure upheaval: Compared to the changes
between our C program in our last column and the C program
shown in this column, the changes between the respective
C++ programs are much fewer and more localized. In addi-
tion to creating a thread-safe Request Queue Singleton,
the primary changes to our C++ thread-pool implementation
are in the Quote Handler class and in our server main
routine.

In our last column, our Quote Handler::open
function spawned a thread to handle each incoming re-
quest. Here, open has been changed to register the new
Quote Handler with the Reactor. Then, when client
requests arrive, the Quote Handler’s handle input
method will queue both the request and the handler until a
thread from the pool becomes available to service it. The
only other change required was to make main create the
thread-safe queue, the thread pool, and the Reactor before
entering into its event loop.

� Greater flexibility and reuse: Fewer changes were re-
quired in the C++ version than in the C version due to the
encapsulation of connection handling, queueing, and request
servicing within C++ classes.

�Minimal connection management overhead: The C++
solution keeps each client connection open until the client
closes it down. In addition, by using the thread-safe

7

Request Queue and the Quote Tuple, we can avoid
the subtle race conditions that plagued the earlier C version.

Obviously, the C++ solution is not without its drawbacks.
For instance, we’ve omitted the code that performs refer-
ence counting to ensure that a Quote Handler is not
deleted until all of the Quote Requests stored in the
Request Queue are removed. In addition, the program-
mer must either be able to buy or build a thread-safe queue
class. Developing such a class is not trivial, especially when
portability among different threads packages, OS platforms,
and C++ compilers is required. The Standard Template Li-
brary (STL) is of no help here since the draft C++ standard
does not require its queue class to be thread-safe. Fortunately,
we are able to leverage the ACE components to simplify our
implementation. ACE has been ported to most versions of
UNIX, as well as the Microsoft Win32 platform.

5 The Multi-threaded CORBA
Thread-Pool Solution

This section illustrates how to implement the thread-pool con-
currency model with MT-Orbix. The solution we describe
below uses the same general design as our C++ implementa-
tion above. It also uses many of the same components (such
as the ACE Singleton and Message Queue classes).

5.1 Implementing Thread-Pools in MT-Orbix

The My Quoter implementation class shown below is al-
most identical to the one we used in our previous column
to implement the thread-per-request model. The main dif-
ference is the use of object composition to associate the
My Quoter implementation class with the Quoter IDL
interface. We’ll discuss this below, but first, here’s the com-
plete implementation:

class My_Quoter // Note lack of inheritance!
{
public:
// Constructor
My_Quoter (const char *name);

// Returns the current stock value.
virtual CORBA::Long get_quote (const char *stock_name,

CORBA::Environment &)
{
CORBA::Long value;
{
// Constructor of m acquires lock.
Read_Guard<RW_Mutex> m (lock_);

value = QUOTE_DB::instance ()->
lookup_stock_price (stock_name);

// Destructor of m releases lock.
}
if (value == -1)
ev.exception (new Stock::Invalid_Stock);

return value;
}

protected:
// Serialize access to database.
RW_Mutex lock_;

};

// Use the Orbix "TIE" approach to associate the
// CORBA interfaces with our implementation.
DEF_TIE_Quoter (My_Quoter)

As before, it’s necessary to protect access to the quote
database with a mutex lock since multiple requests can be
processed simultaneously by threads in the pool.

5.1.1 Associating the IDL Interface with an Implemen-
tation

If you’ve been following our columns carefully, you’ll notice
that the Orbix implementation of the My Quoter class in
the May 1995 C++ Report inherited from a skeleton called
QuoterBOAImpl. This class was automatically generated
by the Orbix IDL compiler, i.e.:

class My_Quoter
// Inherits from an automatically-generated
// CORBA skeleton class.

: virtual public Stock::QuoterBOAImpl

In contrast, our current implementation of My Quoter does
not inherit from any generated skeleton. Instead, it uses
an alternative provided by Orbix called the “TIE” approach,
which is based on object composition rather than inheritance:

class My_Quoter // Note lack of inheritance!
{
// ...

};

// Use the Orbix "TIE" approach to associate the CORBA
// interfaces with our implementation.
DEF_TIE_Quoter (My_Quoter)

The TIE approach is an example of an “object form” of
the Adapter pattern [6], whereas the inheritance approach
we used last column uses the “class form” of the pattern.
The object form of the Adapter uses delegation to “tie” the
interface of the My Quoter object implementation class to
the interface expected by the Quoter skeleton generated
by MT-Orbix. When a request is received, the Orbix Object
Adapter upcalls the TIE object. In turn, this object dispatches
the call to the My Quoter object that is associated with the
TIE object.

The TIE approach is mentioned in the C++ Language Map-
ping chapters of the CORBA 2.0 specification [9]. Not sur-
prisingly, the idea for putting it there originally came from
IONA Technologies, the makers of Orbix. Conforming ORB
implementations are not required to support either the TIE
approach or the inheritance approach, however.2

5.1.2 The C++ Thread-Safe Request Queue

TheRequest Queue used by the CORBA implementation
is reused almost wholesale from the C++ implementation
shown in Section 4.1.1:

2The lack of a clear specification of whether CORBA C++ server skele-
tons use inheritance or delegation is another indication of the CORBA server-
side portability problems we have described in previous columns.

8

SERVERSERVERCLIENTCLIENT

CLIENTCLIENT
CLIENTCLIENT

: Request: Request
QueueQueue

:: OBJECT OBJECT

ADAPTERADAPTER

2:2: RECEIVE RECEIVE

3:3: INVOKE INVOKE

 FILTER FILTER((SS))

4:4: ENQUEUE REQUEST ENQUEUE REQUEST

5:5: DEQUEUE REQUEST DEQUEUE REQUEST

: TP: TP
ThreadThread
FilterFilter

QUOTEQUOTE

SERVERSERVER

1:1: REQUEST REQUEST

QUOTEQUOTE

7:7: RETURN QUOTE VALUE RETURN QUOTE VALUE

: My_Quoter: My_Quoter
ImplImpl : My_Quoter: My_Quoter

ImplImpl

: My_Quoter: My_Quoter
ImplImpl

workerworker
threadthread

workerworker
threadthread

workerworker
threadthread

6:6: UPCALLS UPCALLS

Figure 3: MT Orbix Architecture for the Thread-Pool Stock
Quote Server

// An ACE Singleton that accesses an ACE
// thread-safe queue of CORBA Request pointers.
typedef Singleton<Message_Queue<CORBA::Request *>,

Mutex>
Request_Queue;

The primary difference is that we parameterize it with a
CORBA::Request pointer, rather than a Quote Tuple.
The reason for this is that MT-Orbix performs the low-level
demultiplexing, so we don’t have to do it ourselves.

5.1.3 Thread Filters

Orbix implements a non-standard CORBA extension called
“thread filters.” Each incoming CORBA request is passed
through a chain of filters before being dispatched to its target
object implementation. To dispatch an incoming CORBA
request to a waiting thread, a subclass of ThreadFilter
must be defined to override the inRequestPreMarshal
method. By using a ThreadFilter, the MT Orbix ORB
and Object Adapter are unaffected by the choice of concur-
rency model selected by a CORBA server.

The following class defines a server-specific thread fil-
ter that handles incoming requests in accordance with the
Thread-Pool concurrency model:

class TP_Thread_Filter : public CORBA::ThreadFilter
{
public:
// Intercept request insert at end of msg_que.

virtual int inRequestPreMarshal (CORBA::Request &,
CORBA::Environment &);

// A pool thread uses this as its entry point,
// so this must be a static method.
static void *worker_thread (void *);

};

Orbix callsinRequestPreMarshalmethod before the
incoming request is processed. In the Thread-Pool model,
requests are inserted in FIFO order at the end of a thread-safe
Message Queue as they arrive, as follows:

TP_Thread_Filter::inRequestPreMarshal
(CORBA::Request &req,
CORBA::Environment&)

{
// Will block if queue is full...
Request_Queue::instance ()->insert (&req);

// We’ll dispatch the request later.
return -1;

}

Note that this method must return the magic number �1
to indicate to the Orbix Object Adapter that it has spawned a
thread to deal with the request. This value informs the Object
Adapter that it need not perform the operation dispatch itself,
nor should it return the result to the client. These operations
will be performed by one of the threads in the thread-pool,
as shown in Figure 3.

Figure 3 illustrates the role of the TP Thread Filter
in the MT Orbix architecture for the Thread-Pool stock quote
server. Our quote server must explicitly create an instance of
TP Thread Filter to get it installed into the Orbix filter
chain:

TP_Thread_Filter tp_filter;

The constructor of this object automatically inserts the thread-
pool thread filter at the end of the filter chain.

The worker thread static method serves as the entry
point for each thread in the thread-pool, as shown below:

void *TP_Thread_Filter::worker_thread (void *)
{
// Loop forever, dequeueing new Requests,
// and dispatching them....

for (;;) {
CORBA::Request *req;

// Called by pool threads to dequeue
// the next available message. Will block
// if queue is empty.
Request_Queue::instance ()->remove (req);

// This call will perform the upcall,
// send the reply (if any) and
// delete the Request for us...
CORBA::Orbix.continueThreadDispatch (*req);

}

return 0;
}

All threads wait for requests to arrive on the head of the
message queue kept with the thread filter. The MT-Orbix
method continueThreadDispatch will continue pro-
cessing the request until it sends a reply to the client. At this

9

point, the thread will loop back to retrieve the next CORBA
request. If there is no request available the thread will block
until a new request arrives on the message queue. Likewise,
if all the threads are busy, the queue will continue growing
until it reaches its high-water mark, at which point the thread
running the inRequestPreMarshal method will block.
This relatively crude form of flow control was also used in the
C and C++ implementations shown earlier. Naturally, robust
servers should be programmed more carefully to detect and
handle queue overflow conditions.

The main server program implements the Thread-Pool con-
currency model by spawning off pool size number of
threads, as follows:

const int DEFAULT_POOL_SIZE = 4;

int main (int argc, char *argv[])
{
// Initialize the factory implementation.
My_Quoter_var my_quoter =
new TIE_My_Quoter (My_Quoter) (new My_Quoter);

int pool_size = argc == 1 ? DEFAULT_POOL_SIZE
: atoi (argv[1]);

// Create a pool of worker threads to handle
// quote requests from clients.

Thread::spawn_n (pool_size,
Thread_Filter::worker_thread,
(void *) 0,
THR_DETACHED | THR_NEW_LWP);

// Wait for work to do in the main thread
// (which is also the thread that shepherds
// CORBA requests through TP_Thread_Filter).
TRY {

CORBA::Orbix.impl_is_ready ("Quoter",
IT_X);

} CATCHANY {
cerr << IT_X << endl;

} ENDTRY

return 0;
}

When the Quote server first starts up, it creates a
My Quoter object to service client quote requests. It then
creates a pool of threads to service incoming requests us-
ing the ACE spawn n method. Finally, the main server
thread calls Orbix.impl is ready to notify Orbix that
theQuoter implementation is ready to service requests. The
main thread is responsible for sheparding CORBA requests
through the filter chain to the TP Thread Filter.

Finally, the object we initially created is implicitly de-
stroyed by the destructor of theMy Quoter var. The OMG
C++ Mapping provides for each IDL interface a “ var” class
that can manage object references (“ ptr” types) of that in-
terface type. If we didn’t use a My Quoter var type here,
our code would have to manually duplicate and release the
object as required. By using a My Quoter var, we avoid
such resource management.

5.2 Evaluating the MT-Orbix Thread-Pool So-
lution

The following benefits arise from using MT-Orbix to imple-
ment the thread-pool concurrency model:

� Almost no infrastructure upheaval: The implementa-
tion of the MT-Orbix thread-pool concurrency model shown
above is almost identical to the thread-per-request server from
our previous column. The primary changes we added were
cosmetic (such as using Singletons rather than global vari-
ables and using the object composition to “tie” the Quoter
skeleton with the My Quoter implementation rather than
using inheritance). The ability to quickly and easily modify
applications in this manner allows them to be rapidly tuned
and redeployed when necessary.

� Increased flexibility and reuse: The flexibilityand reuse
of the MT-Orbix solution is similar to the ACE C++ solu-
tion. The main difference is that MT-Orbix is responsible for
most of the low-level demultiplexing and concurrency con-
trol that we had to implement by hand in our C++ solution.
In particular, MT-Orbix hides all its internal synchroniza-
tion mechanisms from the server programmer. Thus, we are
only responsible for locking server-level state (such as the
Request Queue).

� Optimized connection management overhead: MT-
Orbix can perform certain optimizations (such as caching
connections in a thread-safe manner) without requiring any
programmer intervention. It also separates the concerns of
application development from those involving the choice of
suitable transports and protocols for the application. In other
words, using an ORB allows an application to be developed
independently of the underlying communication transports
and protocols.

The primary drawback, of course, is that the mechanisms
used by MT-Orbix are not standardized across the industry.
In general, all the multi-threading techniques we discuss in
this column aren’t standardized yet, and in particular the
TP Thread Filter approach shown above is proprietary
to Orbix. The fact that the CORBA solution shown here
is not portable is yet another indication of the server-side
portability problems with CORBA that we’ve discussed in
previous columns.

Despite these issues, it is important to note that the con-
currency models, patterns, and techniques we discussed in
this article are reusable. Our goal is to help you navigate
through the space of design alternatives. We hope that you’ll
be able to apply them to your projects, regardless of whether
you program in CORBA, DCE, Network OLE, ACE, or any
other distributed computing toolkit.

6 Concluding Remarks

In this column, we examined the thread-pool concurrency
model and illustrated how to use it to develop multi-threaded
servers for a distributed stock quote application. This

10

example illustrated how object-oriented techniques, C++,
CORBA, and higher-level abstractions like the Singleton pat-
tern help to simplify programming and improve extensibility.

Our next column will explore yet another concurrency
model: thread-per-session. This model is supported by a
number of CORBA implementations including MT-Orbix
and ORBeline. Having a choice of concurrency models
can help developers meet the performance, functionality, and
maintenance requirements of their applications. The key to
success, of course, lies in thoroughlyunderstanding the trade-
offs between different models. As always, if there are any
topics that you’d like us to cover, please send us email at
object_connect@ch.hp.com.

Thanks to Prashant Jain, Tim Harrison, and Ron Resnick
for comments on this column.

References
[1] G. Booch, Object Oriented Analysis and Design with Ap-

plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[2] J. Eykholt, S. Kleiman, S. Barton, R. Faulkner, A. Shivalingiah,
M. Smith, D. Stein, J. Voll, M. Weeks, and D. Williams, “Be-
yond Multiprocessing... Multithreading the SunOS Kernel,” in
Proceedingsof the Summer USENIX Conference, (San Antonio,
Texas), June 1992.

[3] D. C. Schmidt, “An OO Encapsulation of Lightweight OS Con-
currency Mechanisms in the ACE Toolkit,” Tech. Rep. WUCS-
95-31, Washington University, St. Louis, September 1995.

[4] D. C. Schmidt, “ASX: an Object-Oriented Framework for
Developing Distributed Applications,” in Proceedings of the
6th USENIX C++ Technical Conference, (Cambridge, Mas-
sachusetts), USENIX Association, April 1994.

[5] A. Stepanov and M. Lee, “The Standard Template Library,”
Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April
1994.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Pat-
terns: Elements of Reusable Object-Oriented Software. Read-
ing, MA: Addison-Wesley, 1994.

[7] T. Harrison and D. C. Schmidt, “Patterns for Reducing Locking
Overhead in Multi-threaded Programs,” in Submitted to the 3rd

Pattern Languages of Programming Conference, September
1996.

[8] D. C. Schmidt, “Design Patterns for Initializing Network Ser-
vices: Introducing the Acceptor and Connector Patterns,” C++
Report, vol. 7, November/December 1995.

[9] Object Management Group, The Common Object Request Bro-
ker: Architecture and Specification, 2.0 (draft) ed., May 1995.

11

