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1 Introduction

This column examines and evaluates several techniques for
developing client/server applications in order to illustrate key
aspects of distributed programming. The application we’re
examining enables investment brokers to query the price of
a stock from a distributed quote database. Our two previous
columns outlined the distributed computing requirements of
this application and examined several ways to implement the
client-side functionality. Below, we compare several ways
to program the server-side of this application.

The solutions we examine in this column range from using
C, select, and the sockets network programming inter-
face; to using C++ wrappers for select and sockets; to
using a distributed object computing (DOC) solution based
on the OMG’s Common Object Request Broker Architecture
(CORBA). Along the way, we’ll examine various tradeoffs
between extensibility, robustness, portability, and efficiency
for each of the three solutions.

2 Server Programming

Developers who write the server-side of an application must
address certain topics that client-side developers may be able
to ignore. One such topic is demultiplexing of requests from
multiple clients. For example, our stock quote server can
be accessed simultaneously by multiple clients connected
via communication protocols such as TCP/IP or IPX/SPX.
Therefore, the server must be capable of receiving client
requests over multiple connections without blocking indefi-
nitely on any single connection.

A related topic that server programmers must address is
concurrency. The two primary types of server concurrency
strategies [1, 2] are distinguished as follows:

� Iterative servers – which handle each client request in
its entirety before servicing subsequent requests. While
processing the current request, an iterative server typ-
ically queues new client requests. An iterative design

is most suitable for short-duration services that exhibit
relatively little variation in their execution time. Inter-
net services like echo and daytime are commonly
implemented as iterative servers.

� Concurrent servers – which handle multiple client re-
quests simultaneously. Concurrent servers help im-
prove responsiveness and reduce latency when the rate
at which requests are processed is less than the rate
at which requests arrive at the server. A concurrent
server design may also increase throughput for I/O-
bound and/or long-duration services that require a vari-
able amount of time to execute. Internet services like
telnet and ftp are commonly implemented as con-
current servers.

Concurrent servers generally require more sophisticated
synchronization and scheduling strategies than iterative
servers. For the example application in this column, we’ll
assume that each stock quote request in the server executes
quickly. Therefore, an iterative server design will suffice
to meet our response and throughput requirements. More-
over, as shown below, our synchronization and scheduling
strategies are simplified by using an iterative server.

We’ll use the UNIX select event demultiplexing sys-
tem call to provide a simple round-robin scheduler. The
select call detects and reports the occurrence of one or
more connection events or data events that occur simulta-
neously on multiple communication endpoints (e.g., socket
handles). The select call provides coarse-grained concur-
rency control that serializes event handling within a process
or thread. This eliminates the need for more complicated
threading, synchronization, or locking within our server.

In-depth coverage of sockets and select appears in [2].
In future columns we’ll discuss how to extend our solutions
to incorporate more sophisticated concurrency and demulti-
plexing strategies.

3 The Socket Server Solution

3.1 Socket/C Code

The followingcode illustrateshow to program the server-side
of the stock quote program using sockets, select, and C.
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The following two C structures define the schema for quote
requests and quote responses:

#define MAXSTOCKNAMELEN 100

struct Quote_Request
{
long len; /* Length of the request. */
char name[MAXSTOCKNAMELEN]; /* Stock name. */

};

struct Quote_Response
{
long value; /* Current value of the stock. */
long errno; /* 0 if success, else errno value. */

};

These structures are exchanged between the client-side and
server-side of the stock quote programs.

Next, we’ve written four C utility routines. These routines
shield the rest of the application from dealing with the low-
level socket interface. To save space, we’ve omitted most
of the error handling code. Naturally, a robust production
application would carefully check the return values of system
calls, handle unexpected connection resets, and insure that
messages don’t overflow array bounds.

The first routine receives a stock quote request from a
client:

// WIN32 already defines this.
#if defined (unix)
typedef int HANDLE;
#endif /* unix */

int recv_request (HANDLE h,
struct Quote_Request *req)

{
int r_bytes, n;
int len = sizeof *req;

/* Recv data from client, handle "short-reads". */
for (r_bytes = 0; r_bytes < len; r_bytes += n) {
n = recv (h, ((char *) req) + r_bytes,

len - r_bytes, 0);
if (n <= 0) return n;

}
/* Decode len to host byte order. */
req->len = ntohl (req->len);
return r_bytes;

}

The length field of aQuote Request is represented as a bi-
nary number that the client’s send request encoded into
network byte order. Therefore, the server’s recv request
routine must decode the message length back into host byte
order usingntohl. In addition, since we use the bytestream-
oriented TCP protocol, the server code must explicitly loop
to handle “short-reads” that occur due to buffer constraints
in the OS and transport protocols.

The following send response routine sends a stock
quote from the server back to the client. It encodes the
numeric value of the stock quote into network byte order
before returning the value to the client, as follows:

int send_response (HANDLE h, long value)
{
struct Quote_Response res;
size_t w_bytes;
size_t len = sizeof res;

// Set error value if failure occurred.

res.errno = value == -1 ? htonl (errno) : 0;
res.value = htonl (value);

/* Respond to client, handle "short-writes". */
for (w_bytes = 0; w_bytes < len; w_bytes += n) {

n = send (h, ((const char *) &res) + w_bytes,
len - w_bytes, 0);

if (n <= 0) return n;
}
return w_bytes;

}

As with recv request, the server must explicitly handle
short-writes by looping until all the bytes in the response are
sent to the client.

The handle quote routine uses the C functions shown
above to receive the stock quote request from the client, look
up the value of the stock in an online database, and return the
value to the client, as follows:

extern Quote_Database *quote_db;
long lookup_stock_price(Quote_Database*,

Quote_Request*);

void handle_quote(HANDLE h)
{

struct Quote_Request req;
long value;

if (recv_request(h, &req) == 0)
return 0;

/* lookup stock in database */
value = lookup_stock_price(quote_db, &req);

return send_response(h, value);
}

The handle quote function illustrates the synchronous,
request/response style of communication between clients and
the quote server. In a future column we’ll illustrate how to
develop asynchronous “publish/subscribe” communication
mechanisms that notify consumers automatically when stock
values change.

The next routine creates a socket server endpoint that lis-
tens for connections from stock quote clients. The caller
passes the port number to listen on as a parameter:

HANDLE create_server_endpoint (u_short port)
{
struct sockaddr_in addr;
HANDLE h;

/* Create a local endpoint of communication. */
h = socket (PF_INET, SOCK_STREAM, 0);

/* Setup the address of the server. */
memset ((void *) &addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_port = htons (port);
addr.sin_addr.s_addr = INADDR_ANY;

/* Bind server port. */
bind (h, (struct sockaddr *) &addr, sizeof addr);

/* Make server endpoint listen for connections. */
listen (h, 5);
return h;

}

The main function shown below uses the C utility rou-
tines defined above to create an iterative quote server. The
select system call demultiplexes new connection events
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and data events from clients. Connection events are handled
directly in the event loop, which adds the new HANDLE to
the fd set used by select. Data events are presumed to
be quote requests, which trigger the handle quote func-
tion to return the latest stock quote from the online database.
Note that data events are demultiplexed using a round-robin
scheduling policy that dispatches the handle quote func-
tion in order of ascending HANDLE values.

int main(int argc, char *argv[])
{

u_short port /* Port to listen for connections. */
= argc > 1 ? atoi(argv[1]) : 10000;

/* Create a passive-mode listener endpoint. */
HANDLE listener = create_server_endpoint(port);
HANDLE maxhp = listener + 1;

/* fd_sets maintain a set of HANDLEs that
select() uses to wait for events. */

fd_set read_hs, temp_hs;
FD_ZERO(&read_hs);
FD_ZERO(&temp_hs);
FD_SET(listener, &read_hs);

for (;;) {
HANDLE h;
/* Demultiplex connection and data events */
select(maxhp, &temp_hs, 0, 0, 0);

/* Check for stock quote requests and
dispatch the quote handler in
round-robin order. */

for (h = listener + 1; h < maxhp; h++)
if (FD_ISSET(h, &temp_hs))

if (handle_quote(h) == 0)
/* Client’s shutdown. */
FD_CLR(h, &read_hs);

/* Check for new connections. */
if (FD_ISSET(listener, &temp_hs)) {

h = accept(listener, 0, 0);
FD_SET(h, &read_hs);
if (maxhp <= h)

maxhp = h + 1;
}
temp_hs = read_hs;

}
/* NOTREACHED */

}

The main program iterates continuously accepting connec-
tions and returning quotes. Once a client establishes a con-
nection with the server it remains connected until the client
explicitly closes down the connection. This design amortizes
the cost of establishing connections since clients can request
multiple quote values without reconnecting.

3.2 Evaluating the Socket Solution

Programming with C, sockets, and select as shown above
yields relatively efficient sequential programs. However,
sockets and select are low-level interfaces. Our previ-
ous column described the many communication-related ac-
tivities that must be performed by programs written at this
level. Briefly, these activities include initializing the socket
endpoints, establishing connections, marshalling and unmar-
shalling of stock quote requests and responses, sending and
receiving messages, detecting and recovering from errors,
and providing security.

In addition to these activities, the server must also per-
form demultiplexing and concurrency. Directly program-
ming select to demultiplex events is particularly prob-
lematic [3]. The select call requires programmers to ex-
plicitly handle many low-level details involving bitmasks,
descriptor counts, time-outs, and signals. In addition to be-
ing tedious and error-prone, select is not portable across
OS platforms.

Another drawback with the current structure of the quote
server is that it hard-codes the application-specific service
behavior directly into the program. This makes it hard to
extend the current solution (e.g., changing from an iterative
to a concurrent server) without modifying existing source
code. Likewise, it is hard to reuse any pieces of this solution
in other servers that implement similar, but not identical,
services.

4 The C++ Wrappers Solution

Using C++ wrappers is one way to simplify the complexity
of programming network servers. C++ wrappers encapsulate
lower-level network programming interfaces such as sockets
and select with type-safe, object-oriented interfaces. The
IPC SAP [4], Reactor [3, 5], and Acceptor [6] C++
wrappers shown below are part of the ACE object-oriented
network programming toolkit. IPC SAP encapsulates sock-
ets and TLI network programming interfaces; the Reactor
encapsulates the select and poll event demultiplexing
system calls; and the Acceptor combines IPC SAP and
theReactor to implement a reusable strategy for establish-
ing connections passively.1

4.1 C++ Wrapper Code

This section illustrates how the use of C++ wrappers im-
proves the reuse, portability, and extensibility of the quote
server. Figure 1 depicts the following three components in
the quote server architecture:

� Reactor – defines a mechanism for registering, re-
moving, and dispatching Event Handlers (such
as the Quote Acceptor and Quote Handler de-
scribed below). The Reactor encapsulates the
select and poll event demultiplexing system calls
with an extensible and portable callback-driven object-
oriented interface.

� Quote Acceptor – a factory that implements the
strategy for accepting connections from clients, fol-
lowed by creating and activating Quote Handlers.

� Quote Handler – interacts with clients by receiving
quote requests, looking up quotes in the database, and

1Communication software is typified by asymmetric connection behavior
between clients and servers. In general, servers listen passively for clients
to initiate connections actively.
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Figure 1: The C++ Wrapper Architecture for the Stock
Quoter Server

returning responses. Quote Handlers can be imple-
mented as either passive or active objects, depending on
how they are configured.

Both the Quote Acceptor and Quote Handler inherit
from the Reactor’s Event Handler base class. This
enables the Reactor to callback to their handle input
methods when connection events and data events arrive, re-
spectively.

We’ll start by showing the Quote Handler. This
template class inherits from the reusable Svc Handler
base class in the ACE toolkit. A Svc Handler defines
a generic interface for a communication service that ex-
changes data with peers over network connections. For the
stock quote application, Svc Handler is instantiated with
a communication interface that receives quote requests and
returns quote values to clients. As shown below, it uses
the IPC SAP SOCK Stream C++ wrapper for TCP stream
sockets. IPC SAP shields applications from low-level de-
tails of network programming interfaces like sockets or TLI.

template <class STREAM> // IPC interface
class Quote_Handler
: public Svc_Handler<STREAM>
// ACE base class defines "STREAM peer_;"

{
public:

Quote_Handler (Quote_Database *db,
Reactor *r)

: db_ (db), reactor_ (r) {}

// This method is called by the Quote_Acceptor
// to initialize a newly connected Quote_Handler,

// which simply registers itself with the Reactor.
virtual int open (void) {

reactor_->register_handler (this, READ_MASK);
}

// This method is invoked as a callback by
// the Reactor when data arrives from a client.
virtual int handle_input (HANDLE) {

return handle_quote ();
}

virtual int handle_quote (void) {
Quote_Request req;

if (recv_request (req) <= 0)
return -1;

long value = db_->lookup_stock_price (req);

return send_response (value);
}

virtual int recv_request (Quote_Request &req) {
// recv_n handles "short-reads"
int n = peer_.recv_n (&req, sizeof req);
if (n > 0)

/* Decode len to host byte order. */
req.len (ntohl (req.len ()));

return n;
}

virtual int send_response (long value) {
// The constructor performs the error checking
// and network byte-ordering conversions.
Quote_Response res (value);

// send_n handles "short-writes".
return peer_.send_n (&res, sizeof res);

}
private:
Quote_Database *db_; // Database reference.
Reactor *reactor_; // Event dispatcher.

};

The next class is the Quote Acceptor. This inherits
from the following reusable Acceptor connection factory
in the ACE toolkit:

template <class SVC_HANDLER, // Service handler
class PEER_ACCEPTOR> // Passive connection factory

class Acceptor
{
public:
// Initialize a passive-mode connection factory.
Acceptor (const PEER_ACCEPTOR::ADDR &addr)

: peer_acceptor_ (addr) {}

// Implements the strategy to accept connections from
// clients, and creating and activating SVC_HANDLERs
// to process data exchanged over the connections.

int handle_input (void) {
// Create a new service handler.
SVC_HANDLER *svc_handler = make_svc_handler ();

// Accept connection into the service handler.
peer_acceptor_.accept (*svc_handler);

// Delegate control to the service handler.
svc_handler->open ();

}

// Pure virtual Factory method to make a svc handler.
virtual SVC_HANDLER *make_svc_handler (void) = 0;

// Returns the underlying passive-mode HANDLE.
virtual HANDLE get_handle (void) {

return peer_acceptor_.get_handle ();
}

private:
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PEER_ACCEPTOR peer_acceptor_;
// Factory that establishes connections passively.

};

The Quote Acceptor subclass is defined by pa-
rameterizing the Acceptor template with concrete
types that (1) accept connections (SOCK Acceptor or
TLI Acceptor) and (2) reactively perform the quote ser-
vice (Quote Handler): Note that using C++ classes and
templates makes it efficient and convenient to conditionally
choose between sockets and TLI, as shown below:

// Conditionally choose network programming interface.
#if defined (USE_SOCKETS)
typedef SOCK_Acceptor PEER_ACCEPTOR;
typedef SOCK_Stream PEER_STREAM;
#elif defined (USE_TLI)
typedef TLI_Acceptor PEER_ACCEPTOR;
typedef TLI_Stream PEER_STREAM;
#endif /* USE_SOCKET */

typedef Quote_Handler <PEER_STREAM> QUOTE_HANDLER;

// Make a specialized version of the Acceptor
// factory to handle quote requests from clients.
class Quote_Acceptor :
public Acceptor <QUOTE_HANDLER, PEER_ACCEPTOR>

{
public:
typedef Acceptor <QUOTE_HANDLER, PEER_ACCEPTOR>

inherited;

Quote_Acceptor (const PEER_ACCEPTOR::ADDR &ad,
Quote_Database *db,
Reactor *r)

: inherited (ad), db_ (db), reactor_ (r) {
// Register acceptor with the reactor, which
// calls the get_handle() method) to obtain
// the passive-mode peer_acceptor_ HANDLE.
reactor.register_handler (this, READ_MASK);

}

// Factory method to create a service handler.
// This method overrides the base class to
// pass in the database and Reactor pointers.

virtual QUOTE_HANDLER *make_svc_handler (void) {
return new QUOTE_HANDLER (db_, reactor_);

}

private:
Quote_Database *db_;
Reactor *reactor_;

}

A more dynamically extensible method of selecting be-
tween sockets or TLI can be achieved via inheritance and
dynamic binding by using the Abstract Factory or Factory
Method patterns described in [7]. An advantage of using
parameterized types, however, is that they improve run-time
efficiency. For example, parameterized types avoid the over-
head of virtual method dispatching and allow compilers to in-
line frequently accessed methods. The downside, of course,
is that template parameters are locked in at compile time,
templates can be slower to link, and they usually require
more space.

The main function uses the components defined above to
implement the quote server:

int main (int argc, char *argv[])
{
u_short port = argc > 1 ? atoi (argv[1]) : 10000;

// Event demultiplexer.
Reactor reactor;

// Factory that produces Quote_Handlers.
Quote_Acceptor acceptor (port, quote_db,

&reactor);

// Single-threaded event loop that dispatches
// all events as callbacks to the appropriate
// Event_Handler subclass object (such as
// the Quote_Acceptor or Quote_Handlers).

for (;;)
reactor.handle_events ();

/* NOTREACHED */
return 0;

}

After the Quote Acceptor factory has been registered
with the Reactor the application goes into an event loop.
This loop runs continuously handling client connections,
quote requests, and quote responses, all of which are driven
by callbacks from the Reactor. Since this application runs
as an iterative server in a single thread there is no need for
additional locking mechanisms. The Reactor implicitly
serializes Event Handlers at the event dispatching level.

4.2 Evaluating the C++ Wrappers Solution

Using C++ wrappers to implement the quote server is an
improvement over the use of sockets, select, and C for the
following reasons:

� Simplify programming – low-level details of program-
ming sockets (such as initialization, addressing, and
handlingshort-writes and short-reads) can be performed
automatically by theIPC SAPwrappers. Moreover, we
eliminate several common programming errors by not
using select directly [3].

� Improve portability – by shielding applications from
platform-specific network programming interfaces.
Wrapping sockets with C++ classes (rather than stand-
alone C functions) makes it easy to switch wholesale be-
tween different network programming interfaces simply
by changing the parameterized types to the Acceptor
template. Moreover, the code is more portable since
the server no longer accesses select directly. For
example, the Reactor can be implemented with
other event demultiplexing system calls (such as SVR4
UNIXpoll, WIN32WaitForMultipleObjects,
or even separate threads) [8].

� Increase reusability and extensibility – the Reactor,
Quote Acceptor, and Quote Handler compo-
nents are not as tightly coupled as the version in Sec-
tion 3.1. Therefore, it is easier to extend the C++ so-
lution to include new services, as well as to enhance
existing services. For example, to modify or extend the
functionality of the quote server (e.g., to adding stock
trading functionality), only the implementation of the
Quote Handler class must change.
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Figure 2: Key Components in the CORBA Architecture

In addition, C++ features like templates and inlining ensure
that these improvements do not penalize performance.

However, even though the C++ wrapper solution is a dis-
tinct improvement over the C solution it still has the same
drawbacks as the C++ wrapper client solution we presented in
our last column: too much of the code required for the appli-
cation is not directly related to the stock market. Moreover,
the use of C++ wrappers does not address higher-level com-
munication topics such as object location, object activation,
complex marshaling and demarshaling, security, availability
and fault tolerance, transactions, and object migration and
copying (most of these topics are beyond the scope of this
article). To address these issues requires a more sophisti-
cated distributed computing infrastructure. In the following
section, we describe and evaluate such a solution based upon
CORBA.

5 The CORBA Solution

Before describing the CORBA-based stock quoter imple-
mentation we’ll take a look at the key components in the
CORBA architecture. In a CORBA environment, a number
of components collaborate to allow a client to invoke an oper-
ation opwith arguments args on an object implementation.
Figure 2 illustrates the primary components in the CORBA
architecture. These components are described below:

� Object Implementation – defines operations that imple-
ment an OMG-IDL interface. We implement our ex-
amples using C++. However, object implementations
can be written in other languages such as C, Smalltalk,
Ada95, Eiffel, etc.

� Client – this is the program entity that invokes an opera-
tion on an object implementation. Ideally, accessing the
services of a remote object should be as simple as calling
a method on that object, i.e., obj->op(args). The
remaining components in Figure 2 support this behavior.

� Object Request Broker (ORB) – when a client invokes an
operation the ORB is responsible for finding the object
implementation, transparently activating it if necessary,

delivering the request to the object, and returning any
response to the caller.

� ORB Interface – an ORB is a logical entity that may
be implemented in various ways (such as one or more
processes or a set of libraries). To decouple applications
from implementation details, the CORBA specification
defines an abstract interface for an ORB. This interface
provides various helper functions such as converting
object references to strings and back, and creating ar-
gument lists for requests made through the dynamic
invocation interface described below.

� OMG-IDL stubs and skeletons – OMG-IDL stubs and
skeletons serve as the “glue” between the client and
server applications, respectively, and the ORB. The
OMG-IDL! programming language transformation is
automated. Therefore, the potential for inconsistencies
between client stubs and server skeletons is greatly re-
duced.

� Dynamic Invocation Interface (DII) – allows a client
to directly access the underlying request mechanisms
provided by an ORB. Applications use the DII to dy-
namically issue requests to objects without requiring
IDL interface-specific stubs to be linked in. Unlike
IDL stubs (which only allow RPC-style requests) the
DII also allows clients to make non-blocking deferred
synchronous (separate send and receive operations) and
oneway (send-only) calls.

� Object Adapter – assists the ORB with delivering re-
quests to the object and with activating the object. More
importantly, an object adapter associates object imple-
mentations with the ORB. Object adapters can be spe-
cialized to provide support for certain object implemen-
tation styles, (e.g., OODB object adapters, library object
adapters for non-remote (same-process) objects, etc).

Below, we outline how an ORB supports diverse and flex-
ible object implementations via object adapters and object
activation. We’ll cover the remainder of the components
mentioned above in future columns.

5.1 Object Adapters

A fundamental goal of CORBA is to support implementa-
tion diversity. In particular, the CORBA model allows for
diversity of programming languages, OS platforms, transport
protocols, and networks. This enables CORBA to encompass
a wide-spectrum of environments and requirements.

To support implementation diversity, an ORB should be
able to interact with various types and styles of object imple-
mentations. It is hard to achieve this goal by allowing object
implementations to interact directly with the ORB, however.
This approach would require the ORB to provide a very “fat”
interface and implementation. For example, an ORB that
directly supported objects written in C, C++, and Smalltalk
could become very complicated. It would need to provide
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separate foundations for each language or would need to uti-
lize a least-common-denominator binary object model that
made programming in some of the languages unnatural.

By having object implementations plug into object
adapters (OAs) instead of plugging directly into the ORB,
bloated ORBs can be avoided. Object adapters can be spe-
cialized to support certain object implementation styles. For
example, one object adapter could be developed specifically
to support C++ objects. Another object adapter might be de-
signed for OO database objects. Still another object adapter
could be created to optimize access to objects located in the
same process address space as the client.

Conceptually, object adapters fit between the ORB and the
object implementation (as shown in Figure 2). They assist
the ORB with delivering requests to the object and with acti-
vating the object. By specializing object adapters, ORBs can
remain lightweight, while still supporting different types and
styles of objects. Likewise, object implementors can choose
the object adapter that best suits their development environ-
ment and application requirements. Therefore, they incur
overhead only for what they use. As mentioned above, the
alternative is to cram the ORB full of code to support differ-
ent object implementation styles. This is undesirable since it
leads to bloated and potentially inefficient implementations.

Currently, CORBA specifies only one object adapter: the
Basic Object Adapter (BOA). According to the specification,
the BOA is intended to provide reasonable support for a wide
spectrum of object implementations. These range from one
or more objects per program to server-per-method objects,
where each method provided by the object is implemented
by a different program. Our stock quoter object implementa-
tion below is written in a generic fashion – the actual object
implementations and object adapter interfaces in your partic-
ular ORB may vary.

5.2 Object Activation

When a client sends a request to an object, the ORB first
delivers the request to the object adapter that the object’s
implementation was registered with. How an ORB locates

both the object and the correct object adapter and delivers the
request to it depends on the ORB implementation. Moreover,
the interface between the ORB and the object adapter is
implementation-dependent and is not specified by CORBA.

If the object implementation is not currently “active” the
ORB and object adapter activate it before the request is de-
livered to the object. As mentioned above, CORBA requires
that object activation be transparent to the client making the
request. A CORBA-conformant BOA must support four dif-
ferent activation styles:

� Shared server – Multiple objects are activated into a
single server process.

� Unshared server – Each object is activated into its own
server process.

� Persistent server – The server process is activated by
something other than the BOA (e.g., a system boot-up
script) but still registers with the BOA once it’s ready to
receive requests.

� Server-per-method – Each operation of the object’s in-
terface is implemented in a separate server process.

In practice, BOAs provided by commercially-available
ORBs do not always support all four activation modes. We’ll
discuss issues related to the BOA specification in Section 5.4.

Our example server described below is an unshared server
since it only supports a single object implementation. Once
the object implementation is activated, the object adapter
delivers the request to the object’s skeleton. Skeletons are
the server-side analog of client-side stubs2 generated by an
OMG-IDL compiler. The skeleton selected by the BOA
performs the callback to the implementation of the object’s
method and returns any results to the client. Figure 3 illus-
trates the request flow from client through ORB to the object
implementation for the stock quoter application presented
below.

5.3 CORBA Code

The server-side CORBA implementation of our stock quote
example is based on the following OMG-IDL specification:

// OMG-IDL modules are used to avoid polluting
// the application namespace.

module Stock {
// Requested stock does not exist.
exception Invalid_Stock {};

interface Quoter {
// Returns the current stock value or
// throw an Invalid_Stock exception.
long get_quote (in string stock_name)

raises (Invalid_Stock);
};

};

In this section we’ll illustratehow a server programmer might
implement this OMG-IDL interface and make the object
available to client applications.

2Stubs are also commonly referred to as “proxies” or “surrogates.”
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Our last column illustrated how client programmers obtain
and use object references supporting the Quoter interface
to determine the current value of a particular stock name.
Object references are opaque, immutable “handles” that
uniquely identify objects. A client application must some-
how obtain an object reference to an object implementation
before it can invoke that object’s operations. An object im-
plementation is typically assigned an object reference when
it registers with its object adapter.

ORBs supporting C++ object implementations typically
provide a compiler that automatically generates server-side
skeleton C++ classes from IDL specifications (e.g., the
Quoter interface). Programmers then integrate their imple-
mentation code with this skeleton using inheritance or object
composition. The My Quoter implementation class shown
below is an example of inheritance-based skeleton integra-
tion:

// Implementation class for IDL interface.

class My_Quoter
// Inherits from an automatically-generated
// CORBA skeleton class.

: virtual public Stock::QuoterBOAImpl
{
public:
My_Quoter (Quote_Database *db): db_ (db) {}

// Callback invoked by the CORBA skeleton.
virtual long get_quote (const char *stock_name)
throw (Stock::Invalid_Stock) {
long value =
db_->lookup_stock_price (stock_name);

if (value == -1)
throw Stock::Invalid_Stock();

return value;
}

private:
// Keep a pointer to a quote database.
Quote_Database *db_;

};

My Quoter is our object implementation class. It inher-
its from the Stock::QuoterBOAImpl skeleton class.
This class is generated automatically from the original IDL
Quoter specification. The Quoter interface supports
a single operation: get quote. Our implementation of
get quote relies on an external database object that main-
tains the current stock price. Since we are single-threaded
we don’t need to acquire any locks to access object state like
db .

If the lookup of the desired stock price is successful the
value of the stock is returned to the caller. If the stock
is not found, the database lookup stock price function
returns a value of�1. This value triggers our implementation
to throw a Stock::Invalid Stock exception.

The implementation of get quote shown above uses
C++ exception handling (EH). However, EH is still
not implemented by all C++ compilers. Thus, many
commercial ORBs currently use special status param-
eters of type CORBA::Environment to convey ex-
ception information. An alternative implementation of
My Quoter::get quote could be written as follows us-
ing a CORBA::Environment parameter:

long
My_Quoter::get_quote (const char *stock_name,

CORBA::Environment &ev)
{
long value =

db_->lookup_stock_price (stock_name);
if (value == -1)

ev.exception (new Stock::Invalid_Stock);
return value;

}

This code first attempts to look up the stock price. If that fails
it sets the exception field in the CORBA::Environment
to a Stock::Invalid Stock exception. A client can
also use CORBA::Environment parameters instead of
C++ EH. In this case the client is obligated to check the
Environment parameter after the call returns before at-
tempting to use any values of out and inout parameters
or the return value. These values may be meaningless if an
exception is raised.

If the client and object are in different address spaces, they
don’t need to use the same exception handling mechanism.
For example, a client on one machine using C++ EH can
access an object on another machine that was built to use
CORBA::Environment parameters. The ORB will make
sure they interoperate correctly and transparently.

The main program for our quote server initializes the
ORB and the BOA, defines an instance of a My Quoter,
and tells the BOA it is ready to receive requests by calling
CORBA::BOA::impl is ready, as follows:

// Include standard BOA definitions.
#include <corba/orb.hh>

// Pointer to online stock quote database.
extern Quote_Database *quote_db;

int main (int argc, char *argv[])
{
// Initialize the ORB and the BOA.
CORBA::ORB_var orb = CORBA::ORB_init (argc, argv, 0);
CORBA::BOA_var boa = orb->boa_init (argc, argv, 0);

// Create an object implementation.
My_Quoter quoter (quote_db);

// Single-threaded event loop that handles CORBA
// requests by making callbacks to the user-supplied
// object implementation of My_Quoter.
boa->impl_is_ready ();
/* NOTREACHED */
return 0;

}

After the executable is produced by compiling and linking
this code it must be registered with the ORB. This is typi-
cally done by using a separate ORB-specific administrative
program. Normally such programs let the ORB know how
to start up the server program (i.e., which activation mode
to use and the pathname to the executable image) when a
request arrives for the object. They might also create and
register an object reference for the object. As illustrated in
our last column, and as mentioned above, clients use object
references to access object implementations.
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5.4 Evaluating the CORBA Solution

The CORBA solution illustrated above is similar to the
C++ wrappers solution shown in Section 4. For instance,
both approaches use a callback-driven event-loop structure.
However, the amount of effort required to maintain, extend,
and port the CORBA version of the stock quoter applica-
tion should be less than the C sockets and C++ wrappers
versions. This reduction in effort occurs since CORBA
raises the level of abstraction at which our solution is devel-
oped. For example, the ORB handles more of the lower-level
communication-related tasks. These tasks include automated
stub and skeleton generation, marshalling and demarshalling,
object location, object activation, and remote method invo-
cation and retransmission. This allows the server-side of the
CORBA solution to focus primarily on application-related
issues of looking up stock quotes in a database.

The benefits of CORBA become more evident when we
extend the quote server to support concurrency. In partic-
ular, the effort required to transform the CORBA solution
from the existing iterative server to a concurrent server is
minimal. The exact details will vary depending on the ORB
implementation and the desired concurrency strategy (e.g.,
thread-per-object, thread-per-request, etc.). However, most
multi-threaded versions of CORBA (such as MT Orbix [9])
require only a few extra lines of code. In contrast, trans-
forming the C or C++ versions to concurrent servers will
require more work. A forthcoming column will illustrate the
different strategies required to multi-thread each version.

Our previous column also described the primary draw-
backs to using CORBA. Briefly, these drawbacks include the
high learning curve for developing and managing distributed
objects effectively, performance limitations [10], as well as
the lack of portability and security. One particularly prob-
lematic drawback for servers is that the BOA is not specified
very thoroughly by the CORBA 2.0 specification [11].

The BOA specification is probably the weakest area
of CORBA 2.0. For example, the body of the
My Quoter::get quotemethod in Section 5.3 is mostly
portable. However, the name of the automatically-generated
skeleton base class and the implementation of main remain
very ORB-specific. Our implementation assumed that the
constructor of the Stock::QuoterBOAImpl base skele-
ton class registered the object with the BOA. Other ORBs
might require an explicit object registration call. These dif-
ferences between ORBs exist because registration of objects
with the BOA is not specified at all by CORBA 2.0.

The OMG ORB Task Force is well aware of this problem
and has issued a Request For Proposals (RFP) asking for ways
to solve it. Until it’s solved (probably mid-to-late 1996),
the portability of CORBA object implementations between
ORBs will remain problematic.

6 Concluding Remarks

In this column, we examined several different programming
techniques for developing the server-side of a distributed
stock quote application. Our examples illustrated how the
CORBA-based distributed object computing (DOC) solu-
tion simplifies programming and improves extensibility. It
achieves these benefits by relying on an ORB infrastructure
that supports communication between distributed objects.

A major objective of CORBA is to let application devel-
opers focus primarily on application requirements, without
devoting as much effort to the underlying communication
infrastructure. As applications become more sophisticated
and complex DOC frameworks like CORBA become essen-
tial to produce correct, portable, and maintainable distributed
systems.

CORBA is one of several technologies that are emerging
to support DOC. In future articles, we will discuss other OO
toolkits and environments (such as OODCE and OLE/COM)
and compare them with CORBA in the same manner that we
compared sockets and C++ wrappers to CORBA. In addition,
we will compare the various distributed object solutions with
more conventional distributed programming toolkits (such as
Sun RPC and OSF DCE).

As always, if there are any topics that you’d like us to cover,
please send us email at object_connect@ch.hp.com.
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