
Object Interconnections

Comparing Alternative Client-side Distributed Programming Techniques (Column 3)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@ch.hp.com

Department of Computer Science Hewlett-Packard Company
Washington University, St. Louis, MO 63130 Chelmsford, MA 01824

This column appeared in the May 1995 issue of the SIGS
C++ Report magazine.

1 Introduction

This month’s column examines and evaluates various pro-
gramming techniques for developing distributed applica-
tions. Our previous column outlined the requirements for
a representative distributed application in the financial ser-
vices domain. This application enables investment brokers
to query the price of a stock, as well as to buy shares of stock.
As shown in Figure 1, the quote service that maintains the
current stock prices is physically remote from brokers, who
work in geographically distributed sites. Therefore, our ap-
plication must work efficiently, robustly, and securely across
various wide area (WAN) and local area (LAN) networks.

We selected the stock trading application because the is-
sues raised by analyzing, designing, and implementing it are
representative of the issues that arise when developing many
other types of distributed applications. Some issues we iden-
tified in our previous column were platform heterogeneity,
high system reliability and availability, flexibility of object
location and selection, support for transactions, security,
and deferred process activation, and the exchange of binary
data between different computer architectures.

After identifying many requirements and problems we
must tackle to create a distributed stock trading application,
it’s time to look at some actual code. This month’s col-
umn examines various distributed programming techniques
used for the client-side of the stock trading application (our
next column will explore server-side techniques). Below, we
compare several solutions that range from using the socket
network programming interface (which is defined using the C
programming language), to using C++ wrappers for sockets,
all the way up to using a distributed object computing (DOC)
solution. The DOC solution is based upon the CORBA inter-
face definition language (IDL) and a CORBA Object Request
Broker (ORB). Each solution illustrates various tradeoffs be-
tween extensibility, robustness, portability, and efficiency.

FDDI

OS/2 - PowerPC

SunOS - SPARC

HP/UX - HPPA

Windows NT - Alpha

Gateway/Router

MVS - IBM

WIDE AREA

NETWORK

ETHERNET

ATM

LAN

BROKERS

BROKERS

QUOTE

SERVERS

Windows- Pentium

Figure 1: Distributed Architecture of Financial Services Sys-
tem

2 The Socket Client Solution

Distributed applications have traditionally been written us-
ing network programming interfaces such as sockets or TLI.
Sockets were developed in BSD UNIX to interface with the
TCP/IP protocol suite [1]. The “Transport Layer Interface”
(TLI) is another network programming interface available on
System V UNIX platforms. Our primary focus in this article
is on sockets since it is widely available on many platforms,
including most variants of UNIX, Windows, Windows NT,
OS/2, Mac OS, etc.

From an application’s perspective, a socket is an endpoint
of communication that is bound to the address of a service.
The service may reside on another process or on another
computer in a network. A socket is accessed via an I/O
descriptor, which is an unsigned integer handle that indexes
into a table of open sockets maintained by the OS.

The standard socket interface is defined using C functions.
It contains several dozen routines that perform tasks such as
locating address information for network services, establish-

1

ing and terminating connections, and sending and receiving
data. In-depth coverage of sockets and TLI appears in [2].

2.1 Socket/C Code

The following code illustrates the relevant steps required to
program the client-side of the stock quote program using
sockets and C. We first create two C structures that define
the schema for the quote request and quote response, respec-
tively:

#define MAXSTOCKNAMELEN 100

struct Quote_Request
{
long len; /* Length of the request. */
char name[MAXSTOCKNAMELEN]; /* Stock name. */

};

struct Quote_Response
{
long value; /* Current value of the stock. */
long errno; /* 0 if success, else error value. */

};

Next, we’ve written a number of C utility routines. These
routines shield the rest of the application from dealing with
the low-level socket API. The first routine actively establishes
a connection with a stock quote server at a port number passed
as a parameter to the routine:

// WIN32 already defines this.
#if defined (unix)
typedef int HANDLE;
#endif /* unix */

HANDLE connect_quote_server (const char server[],
u_short port)

{
struct sockaddr_in addr;
struct hostent *hp;
HANDLE sd;

/* Create a local endpoint of communication. */
sd = socket (PF_INET, SOCK_STREAM, 0);

/* Determine IP address of the server */
hp = gethostbyname (server);

/* Setup the address of server. */
memset ((void *) &addr, 0, sizeof addr);
addr.sin_family = AF_INET;
addr.sin_port = htons (port);
memcpy (&addr.sin_addr, hp->h_addr, hp->h_length);

/* Establish connection with remote server. */
connect (sd,

(struct sockaddr *) &addr, sizeof addr);
return sd;

}

Even though we’ve omitted most of the error handling code,
the routine shown above illustrates the many subtle details
required to program at the socket level.

The next routine sends a stock quote request to the server:

void send_request (HANDLE sd,
const char stock_name[])

{
struct Quote_Request req;
size_t w_bytes;
size_t packet_len;
int n;

/* Determine the packet length. */
packet_len = strlen (stock_name);
if (packet_len > MAXSTOCKNAMELEN)

packet_len = MAXSTOCKNAMELEN;
strncpy (req.name, stock_name, packet_len);
/* Convert to network byte order. */
packet_len += sizeof req.len;
req.len = htonl (packet_len);

/* Send data to server, handling "short-writes". */
for (w_bytes = 0; w_bytes < packet_len; w_bytes += n)

n = send (sd, ((const char *) &req) + w_bytes,
packet_len - w_bytes, 0);

}

Since the length field is represented as a binary number the
send request routine must convert the message length
into network byte order. The example uses stream sockets,
which are created via the SOCK STREAM socket type di-
rective. This choice requires the application code to handle
“short-writes” that may occur due to buffer constraints in the
OS and transport protocols.1 To handle short-writes, the code
loops until all the bytes in the request are sent to the server.

The following recv response routine receives a stock
quote response from the server. If the server couldn’t perform
the request properly it passes back an errno value > 0 to
indicate the problem. Otherwise, the function convents the
numeric value of the stock quote into host byte order and
returns the value to the caller.

int recv_response (HANDLE sd, long *value)
{
struct Quote_Response res;

recv (sd, (char*) &res, sizeof res, 0);
/* Convert to host byte order */

/* Check for failure. */
errno = ntohl (res.errno);
if (errno > 0)

return -1;
else { /* Success! */

*value = ntohl (res.value);
return 0;

}
}

The print quote routine shown below uses the C util-
ity routines defined above to establish a connection with
the server. The host and port addresses are passed by
the caller. After establishing a connection, the routine re-
quests the server to return the current value of the designated
stock name.

void print_quote (const char server[],
u_short port,
const char stock_name[])

{
HANDLE sd;
long value;

sd = connect_quote_server (server, port);
send_request (sd, stock_name);
if (recv_response (sd, &value) != -1)

display ("value of %s stock = $%ld\n",
stock_name, value);

}

1Sequence packet sockets (SOCK SEQPACKET) could be used to pre-
serve message boundaries, but this type of socket is not available on many
operating systems.

2

This routine would typically be compiled, linked into an
executable program, and called as follows:

print_quote ("quotes.nyse.com", 5150, "ACME ORBs");
/* Might print: "value of ACME ORBs stock = $12" */

2.2 Evaluating the Socket Solution

Sockets are a relatively low-level interface. As illustrated
in the code above, programmers must explicitly perform the
following tedious and potentially error-prone activities:

� Determining the addressing information for a service:
The service addressing information in the example above
would be inflexible if the user must enter the IP address and
port number explicitly. Our socket code provides a glimmer
of flexibility by using the gethostbyname utility routine,
which converts a server name into its IP number. A more
flexible scheme would automate service location by using
some type of name service or location broker.

� Initializing the socket endpoint and connecting to the
server: As shown in the connect quote server rou-
tine, socket programming requires a non-trivial amount of
detail to establish a connection with a service. Moreover, mi-
nor mistakes (such as forgetting to initialize a socket address
structure to zero) will prevent the application from working
correctly.

� Marshaling and unmarshaling messages: The current
example exchanges relatively simple data structures. Even
so, the solution we show above will not work correctly if
compilers on the client and server hosts align fields in struc-
tures differently. It also won’t work if sizeof (long)
is a different value on the client and the server. In general,
developing more complicated applications using sockets re-
quires significant programmer effort to marshal and unmar-
shal complex messages that contain arrays, nested structures,
or floating point numbers. In addition, developers must en-
sure that clients and servers don’t get out of sync as changes
are made.

� Sending and receiving messages: The code required to
send and receive messages using sockets is subtle and sur-
prisingly complex. The programmer must explicitly detect
and handle many error conditions (such as short-writes), as
well as frame and transfer record-oriented messages correctly
over bytestream protocols such as TCP/IP.

� Error detection and error recovery: Another problem
with sockets is that they make it hard to detect accidental
type errors at compile-time. Socket descriptors are “weakly-
typed,” i.e., a descriptor associated with a connection-
oriented socket is not syntactically different from a descriptor
associated with a connectionless socket. Weakly-typed inter-
faces increase the potential for subtle run-time errors since
a compiler cannot detect using the wrong descriptor in the
wrong circumstances. To save space, we omitted much of

the error handling code that would normally exist. In a pro-
duction system, a large percentage of the code would be ded-
icated to providing robust error detection and error recovery
at run-time.

� Portability: Another limitation with the solution shown
above is that it hard-codes a dependency on sockets into the
source code. Porting this code to a platform without sockets
(such as early versions of System V UNIX) will require major
changes to the source.

� Secure communications: A real-life stock trading ser-
vice that did not provide secure communications would not
be very useful, for obvious reasons. Adding security to the
sockets code would exceed the capabilities of most program-
mers due to the expertise and effort required to get it right.

3 The C++ Wrappers Client Solution

Using C++ wrappers (which encapsulate lower-level network
programming interfaces such as sockets or TLI within a type-
safe, object-oriented interface) is one way to simplify the
complexity of programming distributed applications. The
C++ wrappers shown below are part of the IPC SAP inter-
process communication class library described in [3]. IPC
SAP encapsulates both sockets and TLI with C++ class cat-
egories.

3.1 C++ Wrapper Code

Rewriting the print quote routine using C++ templates
simplifies and generalizes the low-level C code in the
connect quote server routine, as shown below:

template <class CONNECTOR, class STREAM, class ADDR>
void print_quote (const char server[],

u_short port,
const char stock_name[])

{
// Data transfer object.
STREAM peer_stream;

// Create the address of the server.
ADDR addr (port, server);

// Establish a connection with the server.
CONNECTOR con (peer_stream, addr);

long value;

send_request (peer_stream, stock_name);
if (recv_response (peer_stream, &value) != -1)

display ("value of %s stock = $%ld\n",
stock_name, value);

}

The template parameters in this routine may be instantiated
with the IPC SAP C++ wrappers for sockets as follows:

print_quote<SOCK_Connector, SOCK_Stream, INET_Addr>
("quotes.nyse.com", 5150, "ACME ORBs");

SOCK Connector shields application developers from the
low-level details of establishing a connection. It is a factory

3

[4] that connects to the server located at theINET Addr ad-
dress and produces a SOCK Stream object when the con-
nection completes. The SOCK Stream object performs the
message exchange for the stock query transaction and handles
short-writes automatically. The INET Addr class shields
developers from the tedious and error-prone details of socket
addressing shown in Section 2.1.

The template routine may be parameterized by different
types of IPC classes. Thus, we solve the portability problem
with the socket solution discussed in Section 2.1. For in-
stance, only the following minimal changes are necessary to
port our application from an OS platform that lacks sockets,
but that has TLI:

print_quote<TLI_Connector, TLI_Stream, INET_Addr>
("quotes.nyse.com", 5150, "ACME ORBs");

Note that we simply replaced the SOCK*C++ class wrappers
with TLI* C++ wrappers that encapsulate the TLI network
programming interface. The IPC SAP wrappers for sockets
and TLI offers a conformant interface. Template parameter-
ization is a useful technique that increases the flexibility and
portability of the code. Moreover, parameterization does not
degrade application performance since template instantiation
is performed at compile-time. In contrast, the alternative
technique for extensibility using inheritance and dynamic
binding exacts a run-time performance penalty in C++ due
to virtual function table lookup overhead.

The send request and recv request routines also
may be simplified by using C++ wrappers that handle short-
writes automatically, as illustrated in the send request
template routine below:

template <class STREAM>
void send_request (STREAM &peer_stream,

const char stock_name[])
{
// Constructor does the dirty work...
Quote_Request req (stock_name);

// send_n() handles the "short-writes"
peer_stream.send_n (&req, req.length ());

}

3.2 Evaluating the C++ Wrappers Solution

The IPC SAP C++ wrappers is an improvement over the
use of sockets and C for several reasons. First, they help to
automate and simplify certain aspects of using sockets (such
as initialization, addressing, and handling short-writes). Sec-
ond, they improve portability by shielding applications from
platform-specific network programming interfaces. Wrap-
ping sockets with C++ classes (rather than stand-alone C
functions) makes it convenient to switch wholesale between
different IPC mechanisms by using parameterized types. In
addition, by combining inline functions and templates, the
C++ wrappers do not introduce any measurable overhead
compared with programming with socket directly.

However, C++ wrappers and sockets both suffer from the
same costly drawback: too much of the code required for the
application has nothing at all to do with the stock market.

Moreover, unless you already have a C++ wrapper library like
IPC SAP, developing an OO communication infrastructure
to support the stock quote application is prohibitively ex-
pensive. For one thing, stock market domain experts may
not know anything at all about sockets programming. De-
veloping an OO infrastructure either requires them to divert
their attention to learning about sockets and C++ wrappers,
or requires the hiring of people familiar with low-level net-
work programming. Each solution would typically delay
the deployment of the application and increase its overall
development and maintenance cost.

Even if the stock market domain experts learned to pro-
gram at the socket or C++ wrapper level, it is inevitable that
the requirements for the system would eventually change.
For example, it might become necessary to combine the stock
quote system with a similar, yet separately developed, system
for mutual funds. These changes may require modifications
to the request/response message schema. In this case, both
the original solution and the C++ wrappers solution would
require extensive modifications. Moreover, if the communi-
cation infrastructure of the stock quote system and the mutual
funds system were each custom-developed, interoperability
between the two would very likely prove impossible. There-
fore, one or both of the systems would have to be rewritten
extensively before they could be integrated.

In general, a more practical approach may be to utilize
a distributed object computing (DOC) infrastructure built
specifically to support distributed applications. In the fol-
lowing section, we motivate, describe, and evaluate such a
DOC solution based upon CORBA. In subsequent columns,
we’ll examine solutions based on other DOC tools and envi-
ronments (such as OODCE [5] and OLE/COM [6]).

4 The CORBA Client Solution

4.1 Overview of CORBA

As described in [7], an Object Request Broker (ORB) is
a system that supports distributed object computing in ac-
cordance with the OMG CORBA specification (currently
CORBA 1.2 [8], though major pieces of CORBA 2.0 have
already been completed). CORBA delegates much of the te-
dious and error-prone complexity associated with developing
distributed applications to its reusable infrastructure. Appli-
cation developers are then freed to focus their knowledge of
the domain upon the problem at hand.

To invoke a service using CORBA, an application only
needs to hold a reference to a target object. The ORB is
responsible for automating other common communication
infrastructure activities. These activities include locating
a suitable target object, activating it if necessary, deliver-
ing the request to it, and returning any response back to
the caller. Parameters passed as part of the request or re-
sponse are automatically and transparently marshaled by the
ORB. This marshaling process ensures correct interworking
between applications and objects residing on different com-

4

puter architectures.
CORBA object interfaces are described using an Interface

Definition Language (IDL). CORBA IDL resembles C++ in
many ways, though it is much simpler. In particular, it is
not a full-fledged programming language. Instead, it is a
declarative language that programmers use to define object
interfaces, operations, and parameter types.

An IDL compiler automatically translates CORBA IDL
into client-side “stubs” and server-side “skeletons” that are
written in a full-fledged application development program-
ming language (such as C++, C, Smalltalk, or Modula 3).
These stubs and skeletons serve as the “glue” between the
client and server applications, respectively, and the ORB.
Since the IDL ! programming language transformation is
automated, the potential for inconsistencies between client
stubs and server skeletons is reduced significantly.

4.2 CORBA Code

The following is a CORBA IDL specification for the stock
quote system:

module Stock {
exception Invalid_Stock {};

interface Quoter {
long get_quote (in string stock_name)
raises (Invalid_Stock);

};
};

The Quoter interface supports a single operation,
get quote. Its parameter is specified as an in param-
eter, which means that it is passed from the client to the
server. IDL also permits inout parameters that are passed
from the client to the server and back to the client, and out
parameters that originate at the server and are passed back
to the client. When given the name of a stock as an input
parameter, get quote either returns its value as a long or
throws an Invalid Stock exception. Both Quoter and
Invalid Stock are scoped within the Stock module to
avoid polluting the application namespace.

A CORBA client using the standard OMG Naming service
to locate and invoke an operation on a Quoter object might
look as follows2:

// Introduce components into application namespace.
using namespace CORBA;
using namespace CosNaming;
using namespace Stock;

// Forward declaration.
Object_var bind_service (int argc, char *argv[],

const Name &service_name);

int main (int argc, char *argv[])
{
// Create desired service name
const char *name = "Quoter";
Name service_name;

2Note the use of the using namespace construct in this code to
introduce scoped names into the application namespace; those unfamiliar
with this construct should consult Stroustrup’s “Design and Evolution of
C++” (Addison-Wesley, 1994, ISBN 0-201-54330-3) for more details.

service_name.length(1);
service_name[0].id = name;

// Initialize and locate Quote service.
Object_var obj =

bind_service (argc, argv, service_name);

// Narrow to Quoter interface and away we go!
Quoter_var q = Quoter::_narrow (obj);

const char *stock_name = "ACME ORB Inc.";

try {
long value = q->get_quote (stock_name);
cout << "value of " << stock_name

<< " = $"
<< value << endl;

return 0;
} catch (Invalid_Stock &) {

cerr << stock_name
<< " is not a valid stock name!\n";

return 1;
}

}

This application binds to the stock quote service, asks
it for the value of ACME ORBs, Inc. stock, and
prints out the value if everything works correctly. Sev-
eral steps are required to accomplish this task. First, a
CosNaming::Name structure representing the name of the
desired service must be created. A CosNaming::Name
is a sequence (which are essentially dynamically-sized ar-
rays) ofCosNaming::NameComponents, each of which
is a struct containing two strings members, id and kind.
In our application, we’re only using the id member, which
we set to the string “Quoter,” the name of our service. Be-
fore the object reference returned from our utility routine
bind service can be used as a Quoter, it must be
narrowed3 to the Quoter interface. Once this is done, the
get quote operation is called inside a try block. If an ex-
ception occurs, the catch block for the Invalid Stock
exception prints a suitable error message and exits. If no
exception is thrown, the value returned is displayed on the
standard output as the current value of the stock of ACME
ORBs, Inc.

To simplify our application, the details of initializing the
ORB and looking up object references in the Naming service
have been hidden inside the bind service utility func-
tion. Object references are opaque, immutable “handles”
that uniquely identify objects, and all object implementa-
tions must have one before they can be accessed by client
applications. Here’s how the client might be implemented:

Object_var bind_service (int argc, char *argv[],
const Name &service_name)

{
// Get reference to name service.
ORB_var orb = ORB_init (argc, argv, 0);
Object_var obj =

orb->resolve_initial_references ("NameService");
NamingContext_var name_context =

NamingContext::_narrow (obj);

3Narrowing to a derived interface is similar to using the C++
dynamic cast<T> operator to downcast from a pointer to a base class
to a pointer to a derived class. In the OMG C++ language mapping, the
result of a successful narrow operation is a new object reference statically
typed to the requested derived interface.

5

// Find object reference in the name service.
return name_context->resolve (service_name);

}

To obtain an object reference to the Naming service,
bind service must first obtain a reference to the ORB.
It accomplishes this by calling ORB init. This is a stan-
dard routine defined in the CORBA namespace – it returns an
ORB object reference. Using this object reference, the appli-
cation then invokes resolve initial references.
This routine acts as a miniature name service provided by
the ORB for certain well-known object references. From
this it obtains an object reference to the name service.
Theresolve initial references call returns an ob-
ject reference of type CORBA::Object (the base inter-
face of all IDL interfaces). Therefore, the return value
must be narrowed to the more derived interface type,
CosNaming::NamingContext, before any of the Nam-
ing operations can be invoked on it.

Once the NamingContext object reference has been
obtained, the service name argument is passed to the
resolve operation on the NamingContext. Assum-
ing the name is resolved successfully, the resolve op-
eration returns to the caller an object reference of type
CORBA::Object for the Quoter service.

4.3 Evaluating the CORBA Solution

The example above illustrates how the client-side code deals
directly with the application-related issues of obtaining stock
quotes, rather than with the low-level communication-related
issues. Therefore, the amount of effort required to extend and
port this application will be reduced. This should not come
as a surprise, since the CORBA solution significantly raises
the level of abstraction at which the solution is developed.

Of course, the CORBA solution is not perfect. The use of
CORBA has several potential drawbacks that are important
to understand and evaluate carefully before committing to
use it on a commercial project:

� Learning Curve: The level of abstraction at which our
CORBA solution is developed is much higher than that of
the socket-based solution. However, CORBA does not to-
tally relieve the stock market domain expert of being able
to program DOC software in C++. CORBA introduces a
range of new concepts (such as object references, proxies,
and object adapters), components and tools (such as inter-
face definition languages, IDL compilers, and object-request
brokers), and features (such as exception handling and in-
terface inheritance). Depending on developer experience, it
may take a fair amount of time to ramp-up to using CORBA
productively. As with any other software tool, the cost of
learning the new technology must be amortized over time
and/or successive projects.

� Interoperability and Portability: Interoperability be-
tween different ORBs has traditionallybeen a major problem
with CORBA. This problem was solved recently when the
OMG approved an Interoperability protocol [9]. However,

few if any ORBs actually implement the Interoperabilitypro-
tocol at this time. Therefore, interoperability will remain a
real problem for CORBA-based applications in the near fu-
ture.

Likewise, portability of applications from ORB to
ORB will be limited until conformance becomes more
commonplace. The OMG just recently approved the
IDL-to-C++ language mapping, the Naming service, and
the ORB Initialization service (e.g., ORB init and
resolve initial references). However, like the
standard Interoperability protocol mentioned above, at this
time few if any commercially-available ORBs actually pro-
vide services conforming to these standards.

� Security: Any ORB hoping to serve as the distributed
computing infrastructure for a real stock trading system must
address the need for security within the system. Unfortu-
nately, few if any of the CORBA ORBs available today ad-
dress this issue, since the OMG has not yet standardized on
a Security Service. However, given that the OMG Object
Services Task Force is currently evaluating several proposals
for such a service, a standard OMG security specification
should be available by late 1995 or early 1996.

� Performance: The performance of the stock quote ap-
plication may not be as good as that of the socket-based or
C++ wrapper-based applications. In particular, the ORB is
not tuned specifically to this application. In addition, we are
accessing the Naming service, which probably requires one
or more remote invocations of its own.

For large-scale distributedsoftware systems, the small loss
in micro-level efficiency is often more than made up for
by the increased extensibility, robustness, maintainability,
and macro-level efficiency. In particular, a well designed
CORBA implementation may actually improve performance
by recognizing the context in which a service is accessed and
automatically applying certain optimizations.

For example, if an ORB determines that a requestor and
a target object are co-located in the same address space, it
may eliminate marshaling and IPC and simply invoke the
target object’s method directly. Likewise, if the ORB de-
termines that the requestor and target object are located on
the same host machine, it may suppress marshaling and pass
parameters via shared memory rather than using a message-
passing IPC mechanism. Finally, even if the requestor and
target object are on different machines, an ORB may opti-
mize marshaling if it recognizes that the requestor and target
host support the same byte ordering.

All the optimizations listed above may be performed au-
tomatically without requiring a developer to modify the ap-
plication. In general, manually programming this degree
of flexibility using sockets, C, or C++ would be too time-
consuming to justify the development effort.

6

5 Coping with Changing Requirements

Designing software that is resilient to change is a constant
challenge for developers of large-scale systems. A primary
motivation for DOC is to simplify the development of flexible
and extensible software. Software with these two qualities
adapts more easily to inevitable changes in requirements and
environments during the lifetime of applications in large dis-
tributed systems.

A major benefit of using CORBA rather than sockets or
C++ wrappers is revealed when application requirements
change. For example, imagine that after deploying the first
version of the stock quote application, the customer requests
certain requirement changes described below.

5.1 Adding New Features

New features are inevitably added to successful software
applications. For instance, end-users of the stock quote ap-
plication might request additional query operations, as well
as the ability to place a trade (i.e., to automatically buy shares
of stock) along with determining the current value.

Many new features will modify the request and response
formats. For example, additional information may be re-
turned in a query, such as the percentage that the stock has
risen or fallen in value since the start of the day and the vol-
ume of trading that has taken place (i.e., number of shares
traded).

In a DOC framework that provides an interface definition
language (such as CORBA or DCE), making these changes
is straightforward. For example, changing the information
provided by the service simply adds additional parameters to
an operation’s signature, as follows:

interface Quoter {
long get_quote (in string stock_name,

out double percent_change,
out long trading_volume)

raises (Invalid_Stock);
};

In contrast, adding new parameters to the original socket or
C++ wrapper solution requires many tedious changes to be
performed manually. For example, the struct defining the
request format must change, necessitating a rewrite of the
marshaling code. This modification may introduce inconsis-
tencies into the source code that cause run-time failures. In
addition, handling the marshaling and unmarshaling of the
floating point percent change parameter can be tricky.

Format changes (such as the adding parameters to meth-
ods) typically require recompiling both client and server soft-
ware in many ORB development environments. Often, this
is undesirable since tracking down all the deployed binaries
may be hard. In addition, it may not be possible to take
the system down for an upgrade. Therefore, a less obtrusive
method for managing changes involves creating new inter-
faces. For example, rather than adding parameters as shown
above, a get stats operation could simply be added to a
new derived interface:

interface Stat_Quoter
: Quoter // a Stat_Quoter IS-A Quoter

{
void get_stats (in string stock_name,

out double percent_change,
out long trading_volume)

raises (Invalid_Stock);
};

CORBA’s support for interface inheritance enables it to sat-
isfy the “open/closed” principle of OO library design [10].
By using inheritance, existing clients may continue using the
old interface (i.e., existing library components are “closed,”
which ensures backwards compatibility). Conversely, clients
requiring the new features and services use the new one (i.e.,
the library components are “open” to future extensions).

As an example of adding a trading interface, we could
define a new CORBA IDL interface called Trader to the
Stock module:

interface Trader {
void buy (in string name,

inout long num_shares,
in long max_value)

raises (Invalid_Stock);

void sell (in string name,
inout long num_shares,
in long min_value)

raises (Invalid_Stock);
};

The Trader interface provides two methods, buy and
sell, that are used to trade shares of stock with other bro-
kers.

By using CORBA IDL’s support for multiple inheritance,
an interface describing a full service broker might then be
defined in the Stock module as follows:

interface Broker : Stat_Quoter, Trader {};

The Broker interface now supports all the operations of
both theStat Quoter, Quoter, and Trader interfaces.

Adding this functionality to either the C or C++ socket
solution would probably require extensive changes to all
existing code to incorporate the new features. For exam-
ple, it would be necessary to define several new request and
response message formats. In turn, these changes would
require modifying and recompiling the client and server ap-
plications.

The the OMG-IDL interface subclassing solution
we’ve shown above allows old client to deal with new servers.
However, this solution by itself is inadequate for handling
large-scale, enterprise-wide versioning. There are two limi-
tations with the approach we show:

1. Allowing new clients to interoperate with old servers –
It a new client has a proxy for a Broker class it won’t
be able to interoperate correctly with a server that only
implements theStats Quoter. An ORB will be able
to detect this problem, however, and refuse to give out
an object reference when the new client attempts to bind
with an object of the Broker interface.

7

2. Managing the application configuration – the
inheritance-based solution is rather tightly coupled to
OMG-IDL, and requires too much manual intervention
on the part of system administrators. A comprehensive
set of tools and conventions is crucial to maintain the
integrity and consistency of components in a large-scale
distributed system.

5.2 Improving Existing Features

In addition to adding new features, let’s consider changes
occurring after extensive day-to-day usage and performance
benchmarking of the trading application. Based on experi-
ence and end-user feedback, the following changes to existing
features might be proposed:

� Server location independence: The socket and C++
wrapper code shown in Section 2.1 and 3.1 “hard-codes” the
server name and port number of the service into the applica-
tion. However, the application can be much more flexible if
it delays binding the name to the service until run-time.

Run-time binding to the service can be accomplished in
CORBA by a client locating the object reference of the ser-
vice using a Naming service or a Trader service:

� A Naming service manages a hierarchy consisting of
pairs of names and object references. The desired object
reference can be found if its name is known. An example
of this type of name service is the CosNaming name
service used in the CORBA example shown above.

� A Trader service can locate a suitable object given a
set of attributes for the object, such as supported inter-
face(s), average load and response times, or permissions
and privileges.

Run-time binding allows the application to locate and uti-
lize the server with the lightest load, or the closest server
in order to minimize network transmission delays. In ad-
dition, once the Naming or Trading services are developed,
debugged, and deployed they can be reused by subsequent
distributed applications.

� Bulk requests: rather than sending each quote request
individually, it may be much more efficient to send an entire
sequence of requests and receive a sequence of responses in
order to minimize network traffic.

In CORBA, this type of optimization may be expressed
succinctly using CORBA IDL sequences. While retain-
ing backwards compatibility, we can extend our Quoter
interface to incorporate this change using CORBA IDL in-
heritance and IDL sequences as follows:

interface Bulk_Quoter
: Stat_Quoter // A Bulk_Quoter IS-A Stat_Quoter

{
typedef sequence<string> Names;
struct Stock_Info {
string name;
long value;
double change;
long volume;

};
typedef sequence<Stock_Info> Info;

exception No_Such_Stock {
Names stock; // List of invalid stock names

};

void bulk_quote (in Names stock_names,
out Info stock_info)

raises (No_Such_Stock);
};

Notice how CORBA exceptions may contain user-defined
fields that provide additional information about the causes
of a failure. For example, in the Bulk Quoter class the
No Such Stock exception contains a sequence of strings
indicating which stock names were invalid.

6 Concluding Remarks

In this column, we examined several different techniques
for developing the client-side of a distributed stock trad-
ing application. In general, the example illustrates how the
CORBA-based DOC solution improves extensibility and ro-
bustness by relying on an ORB infrastructure built to support
communication between distributed objects without unduly
compromising efficiency. Relying on an ORB in this man-
ner is not unlike relying on a good general-purpose library
(such as as the C++ Standard Templates Library [11]) for
non-distributed C++ applications. The ORB allows the ap-
plication developer to focus mainly on the application and
not worry nearly as much about the infrastructure required to
support it.

Note that CORBA is only one of several key technologies
that are emerging to support DOC. In future articles, we will
discuss other OO toolkitsand environments (such as OODCE
and OLE/COM) and compare them with CORBA in the same
manner that we compared sockets to CORBA. Before we do
that, though, we need to discuss various aspects of the server-
side of our financial services application, which we will tackle
in our next column. The server-side implements the various
methods defined in the CORBA IDL interfaces.

As always, if there are any topics that you’d like us to cover,
please send us email at object_connect@ch.hp.com.

Thanks to Ron Resnick of BNR for comments on improv-
ing this column.

References
[1] S. J. Leffler, M. McKusick, M. Karels, and J. Quarterman, The

Design and Implementation of the 4.3BSD UNIX Operating
System. Addison-Wesley, 1989.

[2] W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[3] D. C. Schmidt, “IPC SAP: An Object-Oriented Interface to
Interprocess Communication Services,” C++ Report, vol. 4,
November/December 1992.

[4] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1994.

8

[5] J. Dilley, “OODCE: A C++ Framework for the OSF Dis-
tributed Computing Environment,” in Proceedingsof the Win-
ter Usenix Conference, USENIX Association, January 1995.

[6] Microsoft Press, Redmond, WA, Object Linking and Embed-
ding Version 2 (OLE2) Programmer’s Reference, Volumes 1
and 2, 1993.

[7] S. Vinoski, “Distributed Object Computing with CORBA,”
C++ Report, vol. 5, July/August 1993.

[8] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 1.2 ed., 1993.

[9] Object Management Group,Universal Networked Objects,TC
Document 95-3-xx ed., Mar. 1995.

[10] B. Meyer, Object Oriented Software Construction.Englewood
Cliffs, NJ: Prentice Hall, 1989.

[11] A. Stepanov and M. Lee, “The Standard Template Library,”
Tech. Rep. HPL-94-34, Hewlett-Packard Laboratories, April
1994.

9

