
Object Interconnections

Modeling Distributed Object Applications (Column 2)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@ch.hp.com

Department of Computer Science Hewlett-Packard Company
Washington University, St. Louis, MO 63130 Chelmsford, MA 01824

This column appeared in the February 1995 issue of the
SIGS C++ Report magazine.

1 Introduction

In our first column, we discussed several promising benefits
of using object-oriented (OO) technology and C++ to develop
extensible, robust, portable, and efficient distributed applica-
tion software. However, the OO marketplace is often long
on promises and short on viable solutions. Therefore, we’d
like to start moving the discussion from the abstract to the
concrete. In our next several columns, we’ll present an ex-
tended example that compares and contrasts different ways of
using C++ and distributed object computing (DOC) to solve
a representative distributed programming application.

Our example centers around a financial services system,
whose distributed architecture is shown in Figure 1. We’ll
focus on a stock trading application that enables investment
brokers to query stock prices, as well as buy shares of stock.
As shown in Figure 1, the quote server that maintains the
current stock prices is physically remote from brokers, who
work in various geographically distributed sites. Therefore,
our application must be developed to work efficiently, ro-
bustly, and securely across a variety of wide area (WAN) and
local area (LAN) networks. We selected the stock trading
application since the issues involved in analyzing, designing,
and implementing it are remarkably similar to many other
types of distributed applications.

Distributing application services among networks of com-
puters offers many potential benefits. However, implement-
ing robust, efficient, and extensible distributed applications
is more complex than building stand-alone applications. A
significant portion of this complexity is due to the fact that
developers must consider new design alternatives and must
acquire many new skills.

Realizing the potential benefits of DOC requires both
strategic and tactical skills [1]. Strategic skills involve
mastering design patterns [2] and architectural techniques
that exist in the domain of distributed computing. This
month’s column focuses on the strategic issues underlying
the distributed computing requirements and environment of
our stock trading application. Tactical skills involve mas-

FDDI

OS/2 - PowerPC

SunOS - SPARC

HP/UX - HPPA

Windows NT - Alpha

Gateway/Router

MVS - IBM

WIDE AREA

NETWORK

ETHERNET

ATM

LAN

BROKERS

BROKERS

QUOTE

SERVERS

Windows- Pentium

Figure 1: Distributed Architecture of Financial Services Sys-
tem

tering tools such as OO programming languages like C++
and OO DOC frameworks (such as CORBA, OODCE, and
OLE/COM). CORBA is an emerging standard for distributed
object computing sponsored by the OMG [3], OODCE is a
C++ framework for the OSF Distributed Computing Environ-
ment (DCE) [4], and OLE/COM is Microsoft’s technology
for integrating distributed objects [5]. Subsequent columns
will focus on tactical issues by evaluating detailed design and
programming techniques used for the client-side and server-
side of our example distributed application.

2 Application Distributed Computing
Environment and Requirements

A good systems analysis begins by capturing the require-
ments of an application, and modeling the essential elements
in its environment. This section discusses the distributed
computing requirements of our stock trading application, as
well as key characteristics of the distributed computing en-

1

vironment in which it operates. Along the way, we indicate
how these requirements and environmental characteristics
motivate and shape many reusable components and features
found in DOC frameworks.

2.1 Distributed Computing Environment
Characteristics

The distributed computing environment (shown in Figure 1)
in which the stock trading application runs may be character-
ized as follows.

The broker clients and quote servers run on separate com-
puters: These computers are joined by a heterogeneous in-
ternetwork of LANs and WANs (such as Ethernet, FDDI,
and ATM). The network protocol stack connecting the dis-
tributed application components may be based on one of any
WAN and LAN protocol families such as TCP/IP, X.25, ISO
OSI, and Novell IPX/SPX. All these protocol families sup-
port end-to-end communication. However, they have subtly
different characteristics and constraints that complicate soft-
ware portability and interoperability. For example, TCP/IP
is a bytestream transport protocol that ignores application
message boundaries, whereas IPX/SPX maintains message
boundaries [6].

Writing applications that operate transparently across dif-
ferent protocol stacks is often tedious and error-prone. Ide-
ally, a DOC framework should shield applications from
knowledge of these types of communication protocol-level
details. OODCE is particularly strong in this area since
it was designed to run over many protocol stacks. First-
generation CORBA and OLE/COM implementations, in con-
trast, have not addressed protocol stack transparency as vig-
orously. This complicates the development and deployment
of highly portable applications that run on multiple transport
protocols.

Clients and servers may be heterogeneous end systems:
These end systems may run on various hardware platforms
(such as PA-RISC, Intel 80x86, DEC Alpha, SPARC, or the
Power PC). Different hardware platforms possess instruction
sets with either little-endian and big-endian byte orders. To
improve application portability, DOC frameworks typically
provide tools such as interface definition languages (IDLs)
and IDL compilers. These tools generate code that automat-
ically marshals and demarshals method parameters. This
process converts binary data to and from, respectively, a for-
mat that is recognizable throughout a heterogeneous system
of computers with instruction sets containing different byte
orders.

The broker clients and quote servers may also run on differ-
ent operating systems (such as variants of UNIX, Windows
NT, OS/2, or MVS). These operating systems provide dif-
ferent sets of features (such as multi-threading, shared mem-
ory, and GUIs) and different system call interfaces (such as
POSIX or Win32).

DOC frameworks provide different levels of support for
shielding applications from differences in heterogeneous OS

features and interfaces. Several DOC frameworks provide
portable interfaces for certain OS-level features (such as the
thread interface available with OODCE). However, other OS
features (such as text file I/O, shared memory, and graphics)
are often not standardized by DOC frameworks. OLE/COM
addresses OS heterogeneity by the focusing primarily on a
relatively homogeneous OS platform (i.e., the Win32 family
of APIs [7]).

CORBA does not attempt to define a standard set of in-
terfaces to OS features, ostensibly to give users the freedom
to select their favorite OS tools. They may, however, define
a standard set of interfaces for accessing DOC framework
features, such as CORBA’s Dynamic Invocation Interface
(DII). The DII allows a client to directly access the request
mechanisms provided by an Object Request Broker (ORB).
Applications use the DII to dynamically issue requests to ob-
jects without requiring interface-specific stubs to be linked
in. This allows clients to make use of services that are “dis-
covered” at runtime.

It remains to be seen which of these different approaches
to heterogeneity will be embraced by the marketplace.

2.2 Application Requirements for Distributed
Computing

All DOC frameworks provide reusable components that
simplify the development of distributed applications. These
components elevate the level at which applications are de-
signed and implemented. This enables application domain
experts to focus on application-specific aspects of the prob-
lem (such as determining user-friendly interfaces for trading
stocks), rather than wrestling with low-level communication
details.

Our stock trading application has a number of distributed
computing requirements. Many other types of distributedap-
plicationshave similar requirements. Figure 2 shows some of
the DOC components that we use in this section to motivate
and explain our application’s distributed computing require-
ments. Some of these components are specific to our applica-
tion (such as the stock quoter, stock trader, and trading rules
objects), and would typically be developed in-house. Other
components are more generic (such as the printer, network
time, location broker, authenticator, and heartbeat monitor
objects), and are often provided by a DOC framework.

High Reliability: Distributed applications often require
substantial effort to achieve levels of reliability equivalent
to those expected from stand-alone applications. Detect-
ing service failures in a stand-alone application is relatively
straightforward. For example, if a service fails gracefully,
the caller is usually notified by a designated return value.

In contrast, detecting failures in distributed applications is
often extremely complicated. For example, separate com-
ponents in our stock trading application possess incomplete
knowledge of global system state (such as the current price
of a stock). By the time this information becomes available
it may no longer be valid. This is a serious problem for dis-

2

: NETWORK

TIME

: LOCATION

BROKER

: TRADING

RULES

: HEARTBEAT

MONITOR

: STOCK

QUOTER
: PRINTER

: AUTHEN-

TICATOR

: STOCK

TRADER

: STOCK

QUOTER

SOFTWARE BUS

: STOCK

QUOTER

APPLICATION-

INDEPENDENT

APPLICATION

DEPENDENT

Figure 2: DOC Components

tributed applications (such as an algorithmic trading system)
that may exhibit transient inconsistencies due to caching on
clients and/or servers.

Distributed transaction monitors, such as DCE-based
Encina from Transarc, help to improve the reliability of a
distributed application by ensuring that changes to system
state occur atomically, consistently, and repeatably. In prac-
tice, our stock trading application would undoubtedly use
some type of transaction service to ensure reliability. The
OMG recently standardized on a Transaction Object Service
[8], but few if any ORB vendors have yet to offer an imple-
mentation of it with their ORB products. OLE/COM does
not provide support for distributed transaction monitoring

Developing services that are resilient to independent host
and network failures is also difficult. For instance, distributed
applications are designed to tolerate some amount of varia-
tion in network transmission delay. Thus, a client may not
detect an abnormal server termination until after valuable in-
formation is lost. Likewise, server responses may get lost in
the network, causing clients to retransmit duplicate requests.
Isis RDO [9] is a DOC framework that supports reliable dis-
tributed object computing. It provides “fail-stop” semantics
that ensure applications can distinguish reliably between re-
quest delays due to network congestion and lost messages
due to host or network failures [10].

High Availability: Brokers earn their living by buying and
selling stocks. Any time they are unable to access current
stock prices or place trades their business suffers. Since
loss of revenue due to downtime is generally unacceptable,
it is essential that the stock trading system operate with high
availability.

One technique for improving application availability is the
replication of objects and services. For example, the stock
quote object in Figure 2 is replicated to ensure a market
data feed is always accessible (we’ve duplicated the Stock

Quoter object in the figure to illustrate the replication).
Another technique for improving availability is to invoke

applications under the control of a heartbeat monitor. This
service detects and automatically reinvokes an application if
it terminates unexpectedly. The Orbix+Isis ORB [11] sup-
ports transparent replication and reinvocation of CORBA
objects.

Object Location and Selection: Traditional stand-alone
applications generally identify their constituent services via
memory addresses that point to objects and subroutines.
In contrast, distributed applications require more elaborate
mechanisms for naming and locating their remote services.

A traditional scheme for addressing remote services in-
volves Internet (IP) host addresses and communication port
numbers [6]. However, this mechanism is generally inade-
quate for large-scale distributed systems since it is difficult
to administer in a portable and unambiguous manner. For
example, “port 5000” does not necessarily refer to the same
service on separate host machines configured by different
vendors or by network administrators.

DOC frameworks generally provide location brokers that
allow clients to access remote object services via higher-
level names (rather than by low-level memory addresses or
IP/port numbers), and traders that allow remote objects to
be selected based on the desired characteristics of the ser-
vices they provide.1 Location brokers and traders simplify
distributed system administration and promote more flexible
and dynamic placement of services throughout a network by
automating distributed object selection.

If a service has been replicated for improved reliability or
availability, applications may use a location broker or trader

1Unfortunately, there are several overloaded terms here! Location bro-
kers and traders in DOC frameworks are quite different from stock brokers
and traders, though they share some striking similarities.

3

to determine the most appropriate service provider. For ex-
ample, the OODCE Cell Directory Service (CDS) can be
considered to be a type of trader service. CDS supports the
selection of remote services based upon a set of interfaces
and objects associated with each service. In the stock quote
application, the client may rely on a trader to help it locate
a stock quote service that also happens to support the stock
trading service attribute. Likewise, a broker might use the
service attributes to print a postscript document by determin-
ing which printer(s) possess the postscript attribute and/or
by determining which printer has the shortest queue. Using
service attributes to select the shortest queue is an example
of load balancing, described in the following paragraph.

Strongly-typed Interfaces: a major problem in a large-
scale distributed environment is ensuring the consistency
and integrity of the messages and methods shared senders
and receivers. If the type signatures of these messages and
methods become inconsistent, the reliability and correctness
of a distributed system will be severely compromised. Tools
that automate the process of ensuring this consistency are
extremely important, in terms of (1) decreasing the poten-
tial for failure, (2) increasing the extensibility of the system
by decoupling interfaces from implementations, and (3) pro-
viding a convenient means to document the behavior of the
distributed system architecture.

Load Balancing: A bottleneck may result if many ser-
vices are configured into the server-side of the application
and/or too many clients simultaneously access these services.
Conversely, configuring many services into the client-side
may also result in a bottleneck since clients often execute on
cheaper, less powerful host machines.

In general, it is difficult to determine the relative pro-
cessing characteristics of application services a priori since
workloads may vary over time. Therefore, load balancing
techniques that enable developers to experiment with differ-
ent application service partitioning and placement policies
may be necessary. These techniques are supportedby flexible
distributed OS mechanisms that migrate services to other host
machines either statically at installation-time or dynamically
during run-time. Fully automated dynamic load balancing
is still primarily a research topic [12], and few commercial
DOC frameworks support it.

Security: Distributed applications are generally more vul-
nerable to security breaches than are stand-alone applications
since there are more access points for an intruder to attack.
For example, most shared-media networks (such as Ethernet,
token ring, and FDDI) provide only limited built-in protection
against cable tapping and promiscuous-mode “packet snoop-
ing” tools. Likewise, distributed applications must guard
against a client or server masquerading as another entity in
order to access unauthorized information.

DOC frameworks provide various forms of authentication
(e.g., Kerberos), authorization (e.g., OODCE access con-
trol lists), and data security (e.g., DES encryption). As of
this writing, CORBA offers no standard security service, but

technology submissions proposing a Security Object Service
are due to the OMG Object Services Task Force by February
1995, with the selection of the standard to follow (hopefully)
sometime within 1995.

Synchronous Communication and Threading: The com-
munication between a broker client and a quote server may be
performed synchronously. In other words, while a client ap-
plication is querying the database for a stock quote, or waiting
to place a trade, it may not need to perform additional pro-
cessing. This requirement helps to simplify the client-side
program structure since multi-threading and asynchronous
I/O may be avoided. Both of these techniques tend to de-
crease portability and increase development and debugging
effort.

It may be necessary to use multi-threading for the server-
side of the stock trading application, however. Multi-
threading helps to improve throughput and performance in
circumstances where multiple clients make service requests
simultaneously. We’ll cover server-side threading issues in a
future column.

OODCE and OLE/COM both have provisions for multi-
threading (OODCE via DCE pthreads and OLE/COM via
Win32 threads). The OMG CORBA standard, on the other
hand, considers threading to be outside of its scope. Certain
CORBA ORBs (such as Orbix [11]) provide hooks that inte-
grate threading into an application in a relatively transparent
and portable manner.

Deferred Activation: Deferred activation is a technique
that activates only those objects that are actually requested
to perform services on the behalf of clients. Such activa-
tion, which is completely transparent to the client, is needed
in large-scale networks to allow finite computing resources
(such as memory and CPU cycles) to be used efficiently.
Objects that are not currently in use may remain dormant,
knowing that they will be activated if necessary.

Support for deferred activation is useful for certain types of
objects in our stock trading application such as trading rules
illustrated in Figure 2. Certain trading rules may only be
required under circumstances that occur infrequently (such
as a major market correction). By activating these objects “on
demand,” the load on host process systems may be reduced
significantly.

A conforming CORBA ORB is required to activate certain
types of objects when requests arrive for them, if the objects
are not already up and running. Likewise, DCE provides a
similar service via its “DCE daemon” (dced), which is mod-
eled after the Internet superserver inetd [6]. Windows NT
and OLE/COM provide a service control management facil-
ity that initiates and controls network services on a Windows
NT endsystem [13].

Binary Data Exchange: The stock trading application
passes binary data between little- and big-endian machines.
Therefore, marshaling and unmarshaling must be performed
for requests and responses with fields that contain binary
values. As described in Section 2.1, all DOC frameworks
perform these tasks reasonably well.

4

As you can see, the requirements for a distributed applica-
tion like our stock trading example are numerous and com-
plex, perhaps to the point of being overwhelming. The DOC
frameworks and systems discussed in this article provide
varying degrees of support for these requirements. In gen-
eral, the current generation of commercially available DOC
frameworks handle certain requirements fairly well (such as
network heterogeneity, object location and selection, syn-
chronous communication and threading, deferred activation,
security, and binary data exchange). Other requirements are
not handled as thoroughly at this point (such as OS het-
erogeneity, reliability and availability, load balancing, and
interoperability). Naturally, there are exceptions to these
generalizations (e.g., Isis supports fault tolerant DOC and
OODCE handles interoperability quite well). We expect the
next-generation DOC frameworks to provide more compre-
hensive and better integrated support for common distributed
application requirements.

3 Concluding Remarks

In this column, we analyzed the distributed computing en-
vironment and requirements of a representative distributed
stock trading application. Using this application, we iden-
tified a number of common object services that help satisfy
the distributed computing requirements of many emerging
applications. In our next several articles, we will evaluate
various programming techniques for the client-side and the
server-side of our example application. We’ll compare sev-
eral solutions, ranging from using the conventional sockets
network programming interface (which is written in C), to
using C++ wrappers for sockets, all the way up to using the
CORBA Interface Definition Language (IDL) and a CORBA
ORB. Each solution illustrates various tradeoffs between ex-
tensibility, robustness, portability, and efficiency.

In future columns we’ll cover the DOC frameworks and
features mentioned above in much greater detail. Our goal
is to be as comprehensive and unbiased as possible. Please
let us know if we’ve failed to mention your favorite DOC
framework, or if you feel that we’ve misrepresented the fea-
tures and functionality of certain tools and technologies. As
always, if there are any distributed object topics that you’d
like us to cover in future articles, please send us email at
object_connect@ch.hp.com.

References

[1] G. Booch, Object Oriented Analysis and Design with Ap-
plications (2nd Edition). Redwood City, California: Ben-
jamin/Cummings, 1993.

[2] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1994.

[3] Object Management Group,The Common Object Request Bro-
ker: Architecture and Specification, 1.2 ed., 1993.

[4] J. Dilley, “OODCE: A C++ Framework for the OSF Dis-
tributed Computing Environment,” in Proceedingsof the Win-
ter Usenix Conference, USENIX Association, January 1995.

[5] Microsoft Press, Redmond, WA, Object Linking and Embed-
ding Version 2 (OLE2) Programmer’s Reference, Volumes 1
and 2, 1993.

[6] W. R. Stevens, UNIX Network Programming. Englewood
Cliffs, NJ: Prentice Hall, 1990.

[7] H. Custer, Inside Windows NT. Redmond, Washington: Mi-
crosoft Press, 1993.

[8] Object Management Group, Common Object Services Speci-
fication, Volume 1, 94-1-1 ed., 1994.

[9] Isis Distributed Systems, Inc., Marlboro, MA, Isis Users’s
Guide: Reliable Distributed Objects for C++, April 1994.

[10] K. Birman and R. van Renesse, Reliable Distributed Com-
puting with the Isis Toolkit. Los Alamitos: IEEE Computer
Society Press, 1994.

[11] C. Horn, “The Orbix Architecture,” tech. rep., IONA Tech-
nologies, August 1993.

[12] D. C. Schmidt and T. Suda, “An Object-Oriented Framework
for Dynamically Configuring Extensible Distributed Commu-
nication Systems,” IEE/BCS Distributed Systems Engineering
Journal (Special Issue on Configurable Distributed Systems),
vol. 2, pp. 280–293, December 1994.

[13] Microsoft Press, Redmond, WA, Microsoft Win32 Program-
mer’s Reference, 1993.

5

