
Object Interconnections

An Overview of the OMG CORBA Messaging
Quality of Service (QoS) Framework

(Column 19)

Douglas C. Schmidt Steve Vinoski
schmidt@cs.wustl.edu vinoski@iona.com

Department of Computer Science IONA Technologies, Inc.
Washington University, St. Louis, MO 63130 200 West St., Waltham, MA 02154

This column will appear in the March 2000 issue of the
C++ Report magazine.

1 Introduction

This is the final column in our series covering the OMG
CORBA Messaging specification [1]. Our previous columns
in this series covered the communications models supplied
by Messaging [2], explained how to program asynchronous
method invocations (AMI) in C++ [3], and described time-
independent invocation (TII) and interoperable routing [4].
We finish this series by highlighting the quality of service
(QoS) framework supplied by the OMG Messaging specifi-
cation.

Quality of service (QoS) is a widely accepted term that
describes activities and technologies designed to improve
and control communication-oriented resource management
for applications and systems [5]. Many distributed applica-
tions need to selectively configure and optimize various QoS
aspects, such as the end-to-end latency of particular requests,
the aggregate throughput over some interval, the reliability
of one-way message delivery, or how long a client spends
waiting for a reply before it times out. Therefore, the OMG
Messaging specification defines a QoS framework that al-
lows applications to configure and control various aspects of
ORB behavior. This framework defines a set of policy ob-
jects, a framework for managing the policies, and extensions
to GIOP/IIOP that communicate policies between ORBs.

2 An Overview of QoS Policies from
the OMG Messaging Specification

In this section we describe the key QoS features defined in
the OMG Messaging specification. We focus on the policies
that are available to applications and explain where and how
applications can use these policies.

2.1 Client and Server Policy Management
Levels

Client policies: Figure 1 illustrates the four levels at which

ORB CORE

CLIENT OBJ

REF

1. SYSTEM-LEVEL DEFAULTS

2. ORB LEVEL

4. OBJECT

 LEVEL

3. THREAD LEVEL

Figure 1: Client Policy Management Levels

a CORBA client application can establish policies. Below,
we outline each of these policy levels, ranging from the most
coarse-grained control to the most fine-grained control.

1. System-level defaults: ORB implementations sup-
ply a set of system-wide policy defaults that apply if they
are not overridden at any of the levels described below. Be-
cause system-level QoS policy defaults are not standardized,
portable applications concerned with QoS must be sure to
override the desired QoS policies at the appropriate level.

2. ORB-level policies: By setting policies on an
ORB instance, the client can override system-level de-
faults to control the QoS for all requests made through
that ORB. When a client obtains an object reference, that
reference is associated with the ORB instance used to
make the request. Object references can be obtained ei-
ther throughORB::resolve initial references ,
throughORB::string to object , or by receiving the
object reference from another operation invocation.

Because most CORBA applications use only one ORB in-
stance, you may be surprised to learn that an application can
use multiple ORBs simultaneously.1 However, this should
not surprise you given that the ORB itself is a (locality-
constrained) object with an IDL interface. Therefore, just
as applications can create multiple instances of any CORBA

1The phrase “multiple ORBs” often evokes images of linking two dif-
ferent ORB implementations together in the same application, but that’s an
altogether different issue.

1

object, they can create multiple instances of an ORB by in-
voking CORBA::ORBinit multiple times with different
arguments.

Prior to the OMG’s adoption of the Messaging specifica-
tion, applications rarely had any need to instantiate multiple
ORBs. Now that QoS policies can be applied at the ORB
level, however, applications may want to use multiple ORBs
so they can apply different QoS policies to different invoca-
tions. For example, an application might want to commu-
nicate with one set of objects using traditional synchronous
invocations, but communicate with another set of objects us-
ing asynchronous invocations. Such an application might opt
to use two different ORBs, with different QoS policies, to
communicate with these two sets of objects.

3. Thread-level policies: Applications can override
ORB-level and system-level policies on a per-thread basis.
This provides a finer granularity of control that allows re-
quests made in a given thread to have different QoS char-
acteristics than requests made by other threads in the same
application process. Applications can override thread-level
policies by retrieving aPolicyCurrent object from the
ORB’s resolve initial references bootstrapping
operation and invoking appropriate QoS framework opera-
tions, such asset policy overrides .

4. Object-level policies: The finest level of QoS gran-
ularity control available to applications is on a per-object
reference basis. TheCORBA::Object interface supplies
operations to override thread-, ORB-, and system-level QoS
policies, as well as to query theeffectiveclient-side policy
in effect for a given policy type. The ORB implementa-
tion computes the effective policy value by considering the
system-level default and applying any overrides from the
ORB-, thread-, and object-levels.

Server policies: Server applications can provide QoS poli-
cies along with the normal POA policies when they call the
create POAoperation on thePortableServer::POA
class. When an object reference is created using a QoS-
enabled POA, the POA ensures that any server-side policies
that affect client-side requests, such as a request priority pol-
icy, are embedded in theTAG POLICIES component in the
object reference. This enables clients who invoke operations
on such object references to honor the policies required by
the target object. Note that not all policies are usable on
both clients and servers – see the OMG Messaging specifi-
cation [1] for more details.

2.2 Policy Types

The standard QoS policies defined in the OMG Messag-
ing specification provide substantial power and flexibility for
CORBA applications. Below, we briefly outline some of the
standard QoS policy types. Section 3 then describes several
common policies in more detail and illustrates how to pro-
gram them in C++.

Rebind policy: Traditional CORBA applications had no
standard way to control whether and how the client
ORB transparently rebinds if aLOCATION FORWARD re-
sponse is received or if a connection drops. The re-
bind policy allows applications to select whether to trans-
parently rebind (which is the traditional CORBA behav-
ior), rebind when connections are closed but not re-
bind on LOCATION FORWARD responses, or not rebind
at all. In addition, the Messaging specification adds
a CORBA::Object::validate connection opera-
tion that allows applications to control rebinding explicitly,
regardless of the rebind policy in effect.

Synchronization policy: This policy allows applications
to control the semantics ofone-wayoperations explicitly.
Four categories of one-way invocations are defined, each
providing different levels of reliability, features, and latency
overhead. Section 3.2 explores this policy in more detail and
shows how to program it in C++.

Request and reply priority: A time-independent invoca-
tion (TII) router [4] accepts CORBA requests and replies and
stores them persistently until it can forward them to the next
router. The request and reply policies are used in conjunction
with TII routers to determine the order in which requests and
replies are stored and forwarded at routers. Higher priority
requests and replies are given preferential treatment in router
queues.

Request and reply timeout: These policies allow appli-
cations to control several time-related aspects of request and
reply delivery. For example, an application can specify the
time window during which the ORB is allowed to deliver a
given request or reply to its target. Likewise, an client can
control the relative time during which the ORB may deliver
a request. In addition, a client can control the round-trip time
allowed for a request and its reply. After the specified time
has elapsed, the ORB raises aCORBA::TIMEOUT exception.
The application can then perform whatever action is neces-
sary to handle the potential failure. Section 3.1 explores this
policy in more detail and shows how to program it in C++.

Request routing: An application can specify that a request
should not be routed but should be delivered directly by the
client ORB. Conversely, an application can specify that the
request be sent to the target through a particular router. If an
application chooses to use a router, it can specify either asyn-
chronous method invocation [3] or time-independent invoca-
tion [4] (i.e., store-and-forward semantics). Another policy,
MaxHops, allows applications to control the maximum num-
ber of hops a request may take when traversing routers on its
way from the client to the target.

Queue order: This policy can control queueing behavior
for requests that are sent through routers. For instance, appli-
cations can specify any order, temporal order, priority order,
or ordering based on request deadlines [6].

Unfortunately, we do not have enough column space to
provide more details on all of these policies. For more infor-

2

mation, please refer to the OMG CORBA Messaging speci-
fication.

3 QoS Framework Programming Ex-
amples

As shown in Section 2.2, there are a number of policies de-
fined in the OMG Messaging specification. Many of these
policies are intended for use with the TII and interoperable
routing mechanisms, which makes them somewhat esoteric
because there aren’t any widely available implementations
of these mechanisms (yet). Other policies are useful with
conventional CORBA applications, however. In this section
we describe how to program two particularly useful policies:
client timeoutsandreliable one-ways.

3.1 Client Timeouts

Overview: Many client applications must bound the
amount of time they block waiting for the ORB and the
server to process a request end-to-end. This feature is par-
ticularly important for fault tolerance,e.g., by detecting un-
responsive or blocked servers and taking appropriate action,
such as migrating work to alternative servers or reporting a
possible system failure that requires automatic or manual re-
pair. In all these cases, it is desirable to time out operation
invocations after an expected execution time has elapsed.

To support these use-cases, the OMG Messaging specifi-
cation includes policies that client applications can set to au-
tomatically timeout operation invocations. The OMG Mes-
saging specification defines a total of five different timeout
policies. We focus our discussion here on theRelativeR-
oundtripTimeoutpolicy, which is the most useful for con-
ventional CORBA applications. This policy affects only the
behavior of clients,i.e., no timing information is passed to
the server.

At the start of each operation invocation, the client ORB
queries theRelativeRoundtripTimeoutPolicy de-
fined in theMessaging interface. If this policy has been set
by the application, the associated timeout is used to bound
the amount of time spent (1) establishing the connection to
the remote server, (2) sending the request to the server, and
(3) waiting for the reply. Before the ORB waits on any po-
tential blocking operation, it computes the time elapsed since
the start of the request and resets the timeout value to the
remaining time specified by the policy. Thus, if the total
timeout value is 15 msecs and the ORB takes 5 msecs to es-
tablish the connection, only 10 msecs are available to send
the request and receive the reply.

If the timeout expires during any point in the processing
sequence, the client ORB reclaims the resources used for the
outstanding request and raises theCORBA::TIMEOUT excep-
tion. Due to network delays, or simply because the server
takes more than the expected time to process a request, it is
possible for a reply to arriveaftera client ORB has raised the

TIMEOUT exception. Thus, an ORB must be prepared to re-
ceive and ignore replies for requests that the client no longer
cares about.

Programming client timeouts: The following example il-
lustrates how to program client timeouts using theRelativeR-
oundtripTimeoutpolicy. As usual, this example is based on
the following stockQuoter interface, which was first intro-
duced in [7]:

module Stock {
exception Invalid_Stock {};

interface Quoter {
long get_quote (in string stock_name)

raises (Invalid_Stock);
};

};

We’ll start our example by defining the following helper
function:

void
timed_quote (Quoter_ptr quoter)
{

try {
const char *stockname = "ACME ORB inc."

CORBA::Long value =
quoter->get_quote (stockname);

// Print the stock value.
cout << "stock " << stockname

<< " = " << value << endl;
} catch (CORBA::TIMEOUT &timeout) {

// Handle timeout exception...
} catch (Stock::Invalid_Stock&) {

// Handle Invalid_Stock exception...
} catch (...) {

// Handle other exceptions.
}

}

This function tries to get and print the current value of
stockname by invoking theget quote operation via the
quoter object reference. Theget quote method is in-
voked under timeout control, based on the QoS override
techniques shown below. If aCORBA::TIMEOUT or some
other exception is thrown, the function takes corrective ac-
tion.

We implement ourmain driver function next. As
usual, we perform general initialization activities first,
starting by obtaining object references to an ORB and
two locality constrained objects,PolicyManager and
PolicyCurrent , defined by the OMG Messaging spec-
ification.

int main (int argc, char *argv[])
{

try {
CORBA::ORB_var orb =

CORBA::ORB_init (argc, argv);

CORBA::Object_var object =
orb->resolve_initial_references
("ORBPolicyManager");

CORBA::PolicyManager_var policy_manager =
CORBA::PolicyManager::_narrow (object.in ());

3

object = orb->resolve_initial_references
("PolicyCurrent");

CORBA::PolicyCurrent_var policy_current =
CORBA::PolicyCurrent::_narrow (object.in ());

ThePolicyManager object is used to override ORB-level
QoS policies, whereas thePolicyCurrent object is used
to override thread-level QoS policies.

As we pointed out in Section 2.1, the OMG Messaging
specification does not define default system-level QoS poli-
cies. Therefore, we must first initialize the QoS policy de-
faults in thePolicyManager andPolicyCurrent to
be “no-ops.” This will allow us to override them selectively
later on without worrying about side-effects from undesired
defaults.

CORBA::PolicyList policy_list;

// Disable all default policies.
policy_list.length (0);
policy_manager->set_policy_overrides

(policy_list,
CORBA::SET_OVERRIDE);

policy_current->set_policy_overrides
(policy_list,

CORBA::SET_OVERRIDE);

Now that we’ve finished general ORB and Messaging ini-
tialization, we can perform application-specific initializa-
tion. First, we’ll obtain an object reference to aQuoter .

const char *IOR;
// ... assume the IOR is initialized somehow.

object = orb->string_to_object (IOR);

Quoter_var quoter =
Quoter::_narrow (object.in ());

For simplicity, we’ve “hard-coded” the IOR into the pro-
gram. A more sophisticated client would obtain the
Quoter ’s object reference using a factory or a standard
CORBA Object Service, such as Naming or Trading.

Next, we’ll create a 1 second timeout for each policy level,
i.e., ORB-level, thread-level, and object-level, as follows:

// 1 second (TimeT has 100 nanosecond resolution).
TimeBase::TimeT timeout = 10000000;

CORBA::Any timeout_orb;
CORBA::Any thread_timeout;
CORBA::Any object_timeout;

orb_timeout <<= timeout;
thread_timeout <<= timeout;
object_timeout <<= timeout;

Note how the timeout values are stored in CORBA
Anys because that’s the type expected by theORB’s
create policy operation’s second parameter.

Now that we’ve created the timeouts, we’ll use them to
set theRelativeRoundtripTimeoutpolicy at various levels.
We’ll first override the ORB-level policy and invoke a timed
get quote call, as follows:

// Override the ORB policies.
policy_list.length (1);
policy_list[0] = orb->create_policy

(Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE,
orb_timeout);

policy_manager->set_policy_overrides
(policy_list, CORBA::SET_OVERRIDE);

// Invoke the get_quote() operator.
timed_quote (quoter.in ());

// Cleanup.
policy_list[0]->destroy ();

After we override the ORB’sRelativeRoundtripTimeoutpol-
icy, any other invocations that use this ORB will have implic-
itly have a 1 second timeout. Therefore, applications should
be careful when overriding ORB-level QoS policies because
unexpected side-effects can occur.

One way to minimize side-effects is to limit the level at
which QoS policies are overridden. For instance, we can
override theRelativeRoundtripTimeoutpolicy at the thread-
level and invoke another timedget quote call, as follows:

// Override the thread policies.
policy_list.length (1);
policy_list[0] = orb->create_policy

(Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE,
thread_timeout);

policy_current->set_policy_overrides
(policy_list,

CORBA::SET_OVERRIDE);

// Invoke the get_quote() operator.
timed_quote (quoter.in ());

// Cleanup.
policy_list[0]->destroy ();

Unlike the ORB-level override shown earlier, this thread-
level override only affects the current thread.

Even overriding at the thread-level may have undesirable
side-effects, however. Therefore, our final example illus-
trates how to selectively override theRelativeRoundtripTi-
meoutpolicy at the object-level, which is the finest level of
granularity supported by the OMG Messaging QoS policy
framework.

// Override the object policies.
policy_list.length (1);
policy_list[0] = orb->create_policy

(Messaging::RELATIVE_RT_TIMEOUT_POLICY_TYPE,
object_timeout);

// Create a new object reference!
object = quoter->_set_policy_overrides

(policy_list, CORBA::SET_OVERRIDE);

Quoter_var timed_quoter =
Quoter::_narrow (object.in ());

// Invoke the get_quote() operator.
timed_quote (timeout_quoter.in ());

// Cleanup.
policy_list[0]->destroy ();

} catch (...) {
// Handle exceptions...

}
}

4

We invoke the set policy overrides operation
on the quoter object reference itself to create a
timed quoter object reference, which is imbued with the
designatedRelativeRoundtripTimeoutpolicy.2 This new ob-
ject reference is used to invoke the timedget quote oper-
ation. Due to the “immutability of object references” [1], the
originalquoter object reference is not altered in any way.

3.2 Reliable One-ways

Overview: Traditional CORBA one-way semantics are of-
ten unacceptable because there is no guarantee that a par-
ticular invocation will be delivered [2]. Moreover, location
forwarding does not occur with traditional one-way invoca-
tions, which can complicate load balancing, fault tolerance,
and automatic server activation [8].

To address limitations with one-way invocations in
the earlier CORBA standard, therefore, the OMG Mes-
saging specification contains aSyncScopepolicy. This
policy is set by a client and uses new flags in the
response requested field of the GIOP header. The
server ORB checks this field to determine what type of a
reply, if any, is required for a one-way invocation. Figure 2
illustrates where each of the following four synchronization

ORB CORE

oneway_op()CLIENT
OBJECT
(SERVANT)

OBJ

REF

OBJECT
ADAPTERSYNC_NONE

SYNC_WITH_TRANSPORT

SYNC_WITH_SERVER

SYNC_WITH_TARGET

Figure 2: Reliable One-way Synchronization Scopes

scopes are defined in the OMG Messaging specification.

1. SYNC NONE: With this option, the client ORB re-
turns control to the client application before passing the re-
quest to the transport layer. Although the client will not
block, there is no location forwarding or acknowledgement
of reception. This policy is useful for applications that can
tolerate some degree of request lossage.

2. SYNC WITH TRANSPORT: With this option, the ORB
returns control to the client only after the request is passed
successfully to the transport layer,e.g., the client-side TCP
protocol stack. In this case, the client can block if local re-
sources are unavailable. However, there is still no location
forwarding or acknowledgement of reception.

2Note that the set policy overrides operation supplied by
CORBA::Object has a leading underscore so that it, like other
CORBA::Object member functions, does not clash with user-defined op-
eration names defined in derived interfaces.

3. SYNC WITH SERVER: With this option, the server
sends a reply after invoking any servant managers, but be-
fore it dispatches the request to the target object. A reply
of NO EXCEPTION implies that all location forwarding has
been performed and the client ORB can return control to the
client application. Thus, the client will block only as long
as it takes for the invocation to be processed by the ORB
Core and the lower-half of the remote Object Adapter. The
SYNC WITH SERVERoption is particularly useful for appli-
cations that require some degree of reliability, but do not
need to wait for the ultimate upcall to complete.

4. SYNC WITH TARGET: This option is equivalent to a
synchronous two-way CORBA operation,i.e., the client will
block until the server ORB sends a reply after the target ob-
ject has processed the operation. Any location forwarding
will have occurred and aSYSTEM EXCEPTIONreply can be
sent if problems occur. If no exception is raised, the client
can assume that the target servant processed its request.

With the availability of theSyncScopepolicy, theoneway
keyword is now redundant. In particular, you can convert a
two-way operation with no return value orinout or out
parameters into a one-way by defining an appropriate policy
and using the CORBA Messaging QoS policy framework.
Even so, theoneway keyword remains in OMG IDL for
backward compatibility.

Programming reliable one-ways: To illustrate the use of
the SyncScopepolicy and reliable oneway operations, let’s
revisit the IDL interface for the callback handler we defined
in [2]:

module Stock {
module Callback {

struct Info {
string stock_name;
long value;

};

interface Handler {
oneway void push (in Info data);

};

// ...

TheHandler interface defines a one-waypush method
that is used to pass a stock name and its associated value
from a supplier to a consumer that has subscribed to receive
callbacks. Becausepush returns no information to its sup-
plier, we define it as a one-way operation. In the example
below, we illustrate how to program a supplier application
using variousSyncScopepolicies outlined earlier.

As usual, we start by initializing the ORB and policy-
related objects, and then obtain an object reference to a
Callback::Handler , as follows:

int main (int argc, char *argv[])
{

// Initialization activities...
CORBA::ORB_var orb =

CORBA::ORB_init (argc, argv);
object = orb->resolve_initial_references

5

("ORBPolicyManager");
CORBA::PolicyManager_var policy_manager =

CORBA::PolicyManager::_narrow (object.in ());
object = orb->resolve_initial_references

("PolicyCurrent");
CORBA::PolicyCurrent_var policy_current =

CORBA::PolicyCurrent::_narrow (object.in ());

const char *IOR;
// ... assume the IOR is initialized somehow.

CORBA::Object_var object =
orb->string_to_object (IOR);

// Convert object to concrete type.
Stock::Callback::Handler_var handler =

Stock::Callback::Handler::_narrow
(object.in ());

CORBA::PolicyList policy_list;
policy_list.length (1);

Next, we override the ORB-levelSyncScopepolicy to be
SYNC NONE and push the current threshold value of the
ubiquitous ”ACME ORB, Inc.” stock to the callback con-
sumer.

CORBA::Any orb_level;
orb_level <<= Messaging::SYNC_NONE;
policy_list[0] = orb->create_policy

(Messaging::SYNC_SCOPE_POLICY_TYPE,
orb_level);

policy_manager->set_policy_overrides
(policy_list,

CORBA::SET_OVERRIDE);

Stock::Callback::Info info;

// Assign name and value.
info.stock_name =

CORBA::string_dup ("ACME ORB Inc.");
info.threshold_value = TRADING_THRESHOLD;

// Push this info to the callback consumer.
handler->push (info);
policy_list[0]->destroy ();

Since theSYNC NONE policy is effectively a “no-op,” this
example will have no better reliability semantics than a con-
ventional one-way operation. Therefore, to ensure that the
server at least receives the one-way operation, we can set the
SyncScopepolicy to theSYNC WITH SERVERvalue. For va-
riety, we override this policy at the thread-level, as follows:

CORBA::Any thread_level;
thread_level <<= Messaging::SYNC_WITH_SERVER;
policy_list[0] = orb->create_policy

(Messaging::SYNC_SCOPE_POLICY_TYPE,
thread_level);

policy_current->set_policy_overrides
(policy_list,

CORBA::SET_OVERRIDE);

// Push this info to the callback consumer.
handler->push (info);
policy_list[0]->destroy ();

When the server ORB receives thepush operation it will
send back an acknowledgement just before invoking the up-
call on theCallback::Handler servant.

Finally, we show how to set theSyncScopepolicy to the
SYNC WITH TARGETvalue, which we override at the object-
level, as follows:

CORBA::Any object_level;
object_level <<= Messaging::SYNC_WITH_TARGET;
policy_list[0] = orb->create_policy

(Messaging::SYNC_SCOPE_POLICY_TYPE,
object_level);

object = handler->_set_policy_overrides
(policy_list,

CORBA::SET_OVERRIDE);
handler =

Stock::Callback::Handler::_narrow (object.in ());

// Push this info to the callback consumer.
handler->push (info);
policy_list[0]->destroy ();

}

Note that theSYNC WITH TARGET policy value yields se-
mantics that are roughly equivalent to a two-way operation.
The only difference is that a two-way operation can raise
user-defined exceptions, whereas a one-way operation can-
not.

As you can see, this example is structurally similar to the
timeout example from Section 3.1. The main difference is
the use of different policies types and values.

4 Concluding Remarks

This column outlines the myriad QoS policies defined in the
OMG CORBA Messaging specification. As shown above,
these QoS policies provide a new degree of flexibility and
control to CORBA application developers. We focused our
discussion on several policies,client timeoutsand reliable
one-ways, that we’ve found useful when developing real-
world CORBA applications.

When evaluating if and how to use the OMG Messaging
QoS policy framework, we recommend that you consider the
following points.

Programming complexity: Although the QoS policy
framework is very powerful, it comes with an increased cost
in programming complexity. This additional complexity is
necessary to allow CORBA to expand its role as an integra-
tion technology and provide the hooks needed to accommo-
date message-oriented middleware (MOM) solutions within
standards-based CORBA applications. Traditionally, MOM
services have supplied rich QoS configurability. Thus, en-
abling CORBA to interact in the MOM space required it to
supply similar QoS capabilities.

Portability: At this point, no ORBs support the entire
OMG CORBA Messaging specification, though both Or-
bix 2000 [9] and TAO [10] support many of the CORBA
Messaging features. Therefore, before jumping in head first
and using these new features in your next mission-critical
CORBA project, you should check to see which of the QoS
policy framework and associated features your vendor sup-
ports. For example, some ORB implementations use Sin-

6

gleton ORBs and cannot cope with multiple active ORB in-
stances within a single application process.

Quality: ORB implementations that are not specifically
architected and designed to accommodate policy overrides
when establishing bindings from clients to targets will be
hard pressed to support these features easily, robustly, or ef-
ficiently. Therefore, we recommend that you carefully eval-
uate your ORB to determine how accurately its implementa-
tion reflects the OMG CORBA Messaging specification and
how well it implements the Messaging features. We can
tell you from firsthand experience with TAO [10] and Or-
bix 2000 [9] that implementing these features efficiently and
robustly is far from trivial.

Our next column will go back to basics and talk about the
C++ mapping, how it works, and why it is the way it is. In
addition, we’ll talk about what a “modern” C++ mapping
might look like if it dropped compatibility with C and used
ISO/ANSI C++ features instead. As always, send us email
at object_connect@cs.wustl.edu if you have any
questions or comments.

Acknowledgements

Thanks to Jeff Parsons for his help constructing the reliable
one-way example.

References
[1] Object Management Group,CORBA Messaging Specification, OMG

Document orbos/98-05-05 ed., May 1998.

[2] D. C. Schmidt and S. Vinoski, “Introduction to CORBA Messaging,”
C++ Report, vol. 10, November/December 1998.

[3] D. C. Schmidt and S. Vinoski, “Programming Asynchronous Method
Invocations with CORBA Messaging,”C++ Report, vol. 11,
February 1999.

[4] D. C. Schmidt and S. Vinoski, “Time-Independent Invocation and
Interoperable Routing,”C++ Report, vol. 11, April 1999.

[5] Christopher D. Gill and Fred Kuhns and David Levine and
Douglas C. Schmidt and Bryan S. Doerr and Richard E. Schantz and
Alia K. Atlas, “Applying Adaptive Real-time Middleware to Address
Grand Challenges of COTS-based Mission-Critical Real-Time
Systems,” inProceedings of the 1st IEEE International Workshop on
Real-Time Mission-Critical Systems: Grand Challenge Problems,
Nov. 1999.

[6] C. D. Gill, D. L. Levine, and D. C. Schmidt, “The Design and
Performance of a Real-Time CORBA Scheduling Service,”The
International Journal of Time-Critical Computing Systems, special
issue on Real-Time Middleware, to appear, 2000.

[7] D. Schmidt and S. Vinoski, “Comparing Alternative Programming
Techniques for Multi-threaded CORBA Servers: Thread-per-Object,”
C++ Report, vol. 8, July 1996.

[8] M. Henning, “Binding, Migration, and Scalability in CORBA,”
Communications of the ACM special issue on CORBA, vol. 41, Oct.
1998.

[9] IONA Technologies, “Orbix 2000.”
www.iona-iportal.com/suite/orbix2000.htm.

[10] Center for Distributed Object Computing, “TAO: A
High-performance, Real-time Object Request Broker (ORB).”
www.cs.wustl.edu/�schmidt/TAO.html, Washington University.

7

