

LITING WITH CORBA

The OBject MANAGEMENT GROUP
(OMG) was formed in 1989 with
the purpose of creating stan-
dards allowing for the interop-
erability and portability of dis-
tributed object-oriented (O-0)
applications. Unlike the Open
Software Foundation (OSF), the
OMG does not actually produce
software, only specifications.

These specifications are cre-
ated using ideas and technol-
ogy from OMG members who
respond to Requests For In--
formation (RFI) and Requests
For Proposals (RFP) issued by
the OMG. A strength of this
approach is that most of the
major players in the commer-
cial distributed O-O comput-
ing arena are among the sev-
eral hundred companies that
belong to the OMG.

VINOSKI

C++ REPORT JULY—AUGUST 1993

The OMG Object Management Architecture (OMA) attempts
to define, at a high level of abstraction, the various facilities nec-
essary for distributed O-O computing. The core of the OMA is
the Object Request Broker (ORB), a mechanism that provides
transparency of object location, activation, and communication.
In 1991 the OMG published revision 1.1 of the Common Object
Request Broker Architecture (CORBA) specification, a concrete
description of the interfaces and services that must be provided
by compliant ORBs.! Since then, many OMG member companies
have either started shipping or have announced plans to ship
products based on the CORBA specification.

The CORBA is composed of five major components:

* ORB Core

* Interface Definition Language
* Dynamic Invocation Interface
* Interface Repository

* Object Adapters

The next few sections describe each of these components and show
how they provide the flexibility required to support a variety of dis-
tributed O-O systems, emphasizing those developed in C++.

The CORBA specification is well on its
way to becoming the standard base for
distributed O-O applications.

C++ AND DISTRIBUTED 0-0 COMPUTING Almost every C++ pro-
grammer who has written a distributed application has run into
the same problem: How does one ship a C++ object across a net-
work from one process to another? Systems like the Distributed
Computing Environment (DCE) from the OSF provide remote
procedure call (RPC) mechanisms that can ship complicated data
structures across a network, but they do not provide explicit sup-
port for C++ objects. The fact that C++ objects can contain hidden
pointers to virtual function tables eventually becomes a stumbling
block for even the most determined programmer, especially when
networks of heterogeneous computers are involved. What if the re-
ceiving process has never heard of a particular C++ class? Can the
necessary member functions be dynamically loaded? How do the
virtual tables get set up properly when an object is received from
a remote process? Solving these kinds of problems in a portable
fashion is difficult.

Unfortunately, shipping C++ objects across a network typically
requires a violation of object encapsulation. Private data used for
object implementation must somehow be accessed so that the ob-
ject can be taken apart, transmitted, and then reconstructed on the

receiving side. Knowing how objects are laid out in memory can
make such a task possible, but such knowledge is compiler-specific
and is, therefore, not portable. A cleaner approach is to make ev-
ery class support member functions for marshaling and unmar-
shaling its own data, but such programming can be tedious and
error-prone.

Neither of the solutions to the encapsulation problem men-
tioned here solves the biggest problem with C++ object migration,
which is keeping each separate executable component of a dis-
tributed system synchronized with respect to different versions of
the C++ class types involved. Making sure that each component has
been compiled with the same declaration for each class type is
difficult, even with access to the source code. The bugs that result
from transmitting an object to a remote process that has different
knowledge of the object’s type are often difficult to isolate and re-
pair. Third-party applications and applications written in other lan-
guages further compound the problems.

The fact that C++ object migration is such a tough problem leads
to an examination of why an application would want to do it in
the first place. It is often the case that existing client-server appli-
cations, initially written in C, are over time upgraded to use C++
and O-O programming techniques. As part of the conversion, C
structs are often changed into C++ classes. If these structs were
transmitted over the wire by the original application, it becomes
necessary to be able to send them as full-fledged objects once the
application is converted to C++.

Applications that evolve in this manner fail to distinguish be-
tween object state and object behavior. They equate what an object
is made of with what the object does. They are tuned to know that
some objects work by being transmitted across a network, while
other objects exist as servers and work by receiving RPCs. Appli-
cations that know this much about their objects already know too
many implementation details. In simple terms, they do not abide
by the principles of information hiding and encapsulation.

To avoid breaking encapsulation, distributed O-O applica-
tions must deal only with object interfaces and should not care
whether the object implementations are in the same process or on
another machine halfway around the world. This ideal requires
an object model that allows applications to transparently use both
local and remote objects without sacrificing efficiency. Such an ob-
ject model must address issues faced by all developers of dis-
tributed applications, providing a standard object programming
interface that is not only system-independent, but language-
independent as well. In today’s market, where customers demand
open systems and standard interfaces that let them continue to use
their existing software bases, distributed systems that require the
use of one particular programming language are unlikely to be
commercially successful.

ORB CORE In the OMA object model, objects provide services, and
clients issue requests for those services to be performed on their
behalf. The purpose of the ORB is to deliver requests to objects and
return any output values back to clients. The ORB services neces-
sary to accomplish this are completely transparent to the client.
Clients do not need to know where on the network objects reside,

34

JuLy—AuGusT 1993

how they communicate, how they are implemented, how they are
stored, or how they execute.

Before a client can issue a request to an object, it must hold an
object reference for that object. An ORB uses object references to
identify and locate objects so that it can direct requests to them.
As long as the referenced object exists, the ORB allows the holder
of an object reference to request services from it. Object refer-
ences can be made persistent by first asking the ORB to convert
them to strings. Clients can store these string object references in
their own private data files and later retrieve them, ask the ORB to
change them back into object references, and use them to make re-
quests. This capability can be used to maintain persistent links be-
tween objects and the applications that use them, such as hyper-
text links in compound documents.

The CORBA specifies two different ways in which clients can
issue requests to objects:

« Static invocations via interface-specific stubs

 Dynamic invocations via the ORB Dynamic Invocation Inter-
face (DID)

Regardless of which method the client uses to make a request, the
ORB locates the desired object, activates it if it is not already exe-
cuting, and delivers the request to it. The object has no knowledge
of whether the request was made through a static stub or through
the DII, nor does it know where it came from (all security impli-
cations aside). It performs the requested service and returns any
output data back to the ORB, which then returns it to the client.

INTERFACE DEFINITION LANGUAGE Even though an object ref-
erence identifies a particular object, it does not necessarily de-
scribe anything about the object’s interface. Before an application
can make use of an object, it must know what services the object
provides. In CORBA, object interfaces are described in Interface
Definition Language (IDL), a declarative language with a syntax re-
sembling that of C++. IDL provides basic data types (such as short,
long, float, double, and boolean), constructed types (such as struct
and discriminated union), and template types (such as sequence and
string). These are used in operation declarations to define arguments
types and return types. In turn, operations are used in interface dec-
larations to define the services provided by objects. IDL also pro-
vides a module construct that can hold interfaces, type definitions,
and other modules for name scoping purposes.

Of all the types provided in IDL, interfaces are the most im-
portant. In addition to describing CORBA objects, they are also
used as object reference types. Operations can be declared to re-
turn object references and to take object references as arguments
simply by using interface names as follows:

interface MailMsg;

interface Mailbox

{
MailMsg next_msg() ;
};

In this example, a client of a Mailbox object can use the return
value of the next_msg() operation to invoke operations on a MailMsg
object, since the return value is an object reference.

An Extension of C and C++

Make C and C++ coding easier, faster,
and more efficient.

Some of ARC++’s many features let you:
- Define your own operators
- Create "packages"” as in Ada
- Overload enumerators for better naming conventions
- Know how many arguments are passed to a function
- Hide more functionality under a simpler syntax
- Define smarter "smart pointers”
- Make classes "idiot proof"

ARC++ generates C or C++ code compatible with most existing
software development environments. Call for listings.

Macintosh MPW or A/UX
MS-DOS
Sun SparcStation
Silicon Graphics
For More Information Call:
(800) 257-0073, or (301) 459-3773 ext. 246
Fax (301) 459-3776

ARSoftware

k 8201 Corporate Drive, Suite 1110 - Landover, MD 20785 USAJ

IDL provides interface inheritance in which derived inter-
faces inherit the operations and types defined in their base in-
terfaces. In C++ terms, IDL interface inheritance exhibits the fol-
lowing characteristics:

« All base interfaces are effectively public virtual
« All operations are effectively virtual
« Operations cannot be redeclared in derived interfaces

« There is no notion of implementation inheritance

The fact that CORBA IDL is a declarative language heightens the
separation of interface and implementation that is emphasized
in O-O systems development. For example, in C++, the concepts
of interface inheritance and implementation inheritance are
mixed together. An object of a derived C++ class always contains
all the data members of its base classes, and, for the purposes of
polymorphism, a derived class can only redefine base class mem-
ber functions that are explicitly declared virtual. Since IDL is not
an implementation language, it does not confuse these two types
of inheritance.

Base interfaces are only inherited once because interfaces rep-
resent object behavior, not object state. In C++, unless virtual in-
heritance is used, an object of a derived class is composed of mul-
tiple objects of a multiply inherited base class type. This is because
a C++ class represents both what an object is made of and what an
object can do. There is no concept of state in IDL, only behavior.

C++ REPORT

35

By inheriting a base interface, an object of a derived interface
promises to support that interface, but it makes no promise about
how its implementation will do so.

C++ programmers may initially be bothered by the inability to
redeclare operations inherited from base interfaces in derived in-
terfaces. It might seem that this restriction prevents CORBA ob-
jects from being used polymorphically. Again, due to the split be-
tween interface and implementation, this is not the case. Object
implementations are free to use any inheritance features of their
implementation languages, independent of IDL inheritance. The
degree of polymorphism seen by client applications depends only
on how object references are mapped to the client implementa-
tion language.

In IDL, all interfaces implicitly derive from a root interface
called Object. (This is an unfortunate choice of names since many
existing software libraries also use the name Object for other pur-
poses.) The Object interface provides services common to all ORB
objects, such as duplicate and release for object references, and
is_nil for checking the validity of object references. Most C++ pro-
grammers frown on single-rooted inheritance hierarchies because
they result in C++ classes with bloated or “fat” interfaces. However,
with IDL interface inheritance, the use of a common base inter-
face makes sense since all objects in the system are by definition
CORBA objects and so must provide these basic services.

IDL compilers translate IDL language constructs into specific
programming language modules according to CORBA language
bindings. For example, CORBA revision 1.1 specifies a language
binding for C in which object references are mapped to void* data
pointers. Basic data types, such as short, long, string, struct, and
array, are mapped to C in the obvious manner. Operations are
mapped to C functions that take an object reference as a distin-
guished first parameter.

The next IDL language binding to be specified by CORBA will
be C++. In December 1992, the OMG issued a REP for C++ lan-
guage bindings for IDL, and they expect to issue a final decision
on such a binding in December 1993.2 The RFP states that re-
sponses are free to use any C++ features as defined in Stroustrup’s
THE C++ PROGRAMMING LANGUAGE, Second Edition (presumably
referring to the reference manual portion of the book), including
templates and exceptions.?

What might a C++ language mapping for CORBA IDL look like?
Hewlett-Packard Company, IONA Technologies Ltd., and SunSoft,
Inc. (a division of Sun Microsystems, Inc.) have jointly developed
a CORBA IDL C++ mapping that attempts to make CORBA ob-
jects look as much like normal C++ objects as possible. To achieve
that goal, IDL interfaces are mapped to C++ classes called surro-
gates, and IDL operations are mapped to member functions of
those surrogates. Public virtual derivation for surrogate base classes
is necessary to mimic IDL interface inheritance semantics. Object
references are implemented as pointers to surrogate classes, al-
lowing C++ to implicitly convert pointers to derived interfaces to
pointers to base interfaces.

With this C++ language mapping, a client can invoke an oper-
ation on an object reference for the Mailbox interface shown ear-
lier in the following manner:

// assuming "mbox_objref" is a string

// representing an object reference
Mailbox *mbox = ORB::string_to_objref (mbox_objref) ;
if (!Mailbox::is_nil (mbox)) {

MailMsg *msg = mbox->next_msg() ;

if (!MailMsg::is_nil(msg)) {

// call operation on msg

}

Not only do object surrogate classes provide a natural mapping for
IDL to C++, they also maintain the compile-time type checking that
C++ users rely on. In the example above, the C++ compiler will en-
sure that only Mailbox operations are invoked on the Mailbox ob-
ject reference and not on the MailMsg object reference, and it will
check that each member function call has the correct number and
types of arguments.

Our experiences with such an IDL-to-C++ mapping have shown
the need to be able to typecast object references for base interfaces
to those for derived interfaces (others have described similar find-
ings?). This is ordinarily frowned upon for typical C++ program-
ming, but for distributed programming, it is sometimes a neces-
sity because the real type of the object may be unknown in some
parts of the system. . i

Downcasting or “narrowing” object references can be done in
several ways. An approach familiar to C++ users is to provide type-
safe casting by augmenting objects with both a type identification
field and member functions that use it, as is done in Keith Gorlen’s
NIH Class Library.> An alternative to providing a downcasting
mechanism for surrogates might appear to be the run-time type
identification (RTTI) mechanism recently voted into the C++ lan-
guage by the ANSI X3J16 and ISO WG21 standardization commit-
tees.s The RTTI mechanism allows downcasting to be performed
via the dynamic_cast<T*> operator. For example, the
ORB::string_to_objref function used in the Mailbox example actually
returns a pointer to a root IDL Object, which must be cast down to
the desired type:

CORBA: :Object *obj = ORB::string_ to_objref (mbox_objref) ;

Mailbox *mbox = dynamic_cast<Mailbox*>(obj) ;

Unfortunately, this downcasting method does not work as ex-
pected. The CORBA::Object pointer obtained by converting the string
to an object reference does not really point to a Mailbox object sur-
rogate. Instead, it points to a CORBA::Object surrogate, and so dy-
namic_cast will fail and return 0. The dynamic_cast operator only
knows about the C++ type of the object surrogate, not the IDL type
supported by the remote object implementation.

Accurate runtime type checking of an object reference could be
performed by an ORB via an Interface Repository (explained be-
low), but such checking may require multiple remote procedure
calls to figure out if the object really is of the desired type. It is al-
most always more efficient for the ORB to just assume that the ob-
ject is of the more derived type and provide a narrowed surrogate
for it. If an operation invoked on the narrowed surrogate is not sup-
ported by the object implementation it refers to, a BAD_OPERATION
exception is returned to the caller.

36

JuLYy—AUGUST 1993

C++ programmers may question why CORBA specifies an en-
tirely new language for describing object interfaces rather than us-
ing a declarative subset of C++. There are several good reasons for
this choice:

« The CORBA specification is intended to be language-indepen-
dent. Using a subset of C++ for IDL lessens the chances of
CORBA being widely accepted in the distributed O-O pro-
gramming community.

 C++ is known to be difficult to parse.” Using a subset of C++
might ultimately limit the number of IDL compiler imple-
mentations available.

* Some features of C++, notably pointers, make marshaling and
unmarshaling of data difficult.

« Any declarative subset of C++ chosen would most likely be
different enough from normal C++ to be confusing to experi-
enced C++ users.

As it is, CORBA IDL strongly resembles C++, and, in our expe-
rience, most C++ programmers find it easy to understand and
use effectively.

INTERFACE REPOSITORY Another service supported by the Object
interface and hence all object references is the get_interface() op-
eration. This operation returns an object reference to an Inter-
faceDef that describes the object’s interface. The InterfaceDef is
stored in an Interface Repository (IR), which provides persistent
storage for IDL interface declarations. The services offered by an
IR allow navigation of an object’s inheritance hierarchy and pro-
vide descriptions of all operations that an object supports. Some
of these services return references to other IR objects, such as
OperationDef objects that describe operations and ExceptionDef ob-
jects that describe user-defined exception types.

Interface Repositories can be used for several purposes. In-
terface browsers can traverse IR information to help application
developers locate potentially reusable software components. ORBs
could use them to check operation parameter types at runtime
(but such overhead can normally be avoided by using IDL-gen-
erated stubs mapped to a statically typed language like C++). The
primary function of the IR, however, is to provide the type in-
formation necessary to issue requests using the Dynamic Invo-
cation Interface.

DYNAMIC INVOCATION INTERFACE The compilation of IDL dec-
larations into C++ or C stubs allows clients to invoke operations
on known objects, but some applications must be able to make calls
on objects without having compile-time knowledge of their inter-
faces. For example, a graphical user interface (GUI) builder might,
given a list of object references for drawable components, allow
users to browse Interface Repositories, learn about the operations
supported by each object, and then invoke operations on them to
see how they present themselves on a display. Such a GUI builder
would only have to know how to traverse IR information and
prompt the user for any data necessary to fulfill operation param-

eter requirements. It could then invoke any operation the user de-
sires via the Dynamic Invocation Interface (DII).

In essence, the DII is a generic client-side stub capable of for-
warding any request to any object. It does this by runtime interpre-
tation of request parameters and operation identifiers. Clients can
create requests via the Object::create_request operation. This opera-
tion returns an object reference to a Request object that is actually
implemented as part of the ORB. Request objects support services
such as add_arg for filling in request parameters and invoke for call-
ing the operation represented by the Request. They also allow deferred
synchronous requests via their send and get_response operations.

The flexibility provided by the DII can be costly, however. A re-
mote request made through a compiler-generated stub/skeleton
pair can be achieved in a single RPC, but the same call made
through the DII requires calls to:

* Object::get_interface to obtain an InterfaceDef object

« InterfaceDef::describe_interface to obtain information about the
operations supported by the object

- Object::create_request to create a Request object for the desired
operation

* Request::add_arg for each request argument

* Request::invoke to actually make the request

For an operation with no arguments and a void return type, the DII
requires a minimum of two function calls, at least one of which may
result in a RPC. There is also the overhead of the DII having to in-
terpret the request, not to mention the bulky application code re-
quired to implement this series of steps. For most applications, es-
pecially those written in a compiled language like C++, it is far more
efficient to make requests through static IDL stubs than through
the DII.

OBJECT ADAPTERS CORBA allows object implementations to vary
widely. In some cases, multiple IDL interfaces may be implemented
by a single server program, while in other cases an IDL interface may
be implemented by a series of shell scripts, one for each operation.
Some may be “legacy applications” developed well before CORBA
came about, while others may be O-O systems developed specifically
to work with an ORB. The ORB provides this flexibility to permit
the straightforward integration of legacy applications without lock-
ing new objects into a limited set of implementation criteria.

An object adapter (OA) provides the means by which various
types of object implementations use ORB services, such as:

+ Object reference generation

» Object method invocation

* Security

« Activation and deactivation of objects and implementations
Depending on the underlying ORB, an OA may choose to provide
these services by delegating to the ORB or by performing the work

itself. In either case, object implementations are not aware of the
difference because they interface only to the OA.

C++ REPORT

37

Interface IDL
Repository Compiler

client object

application implementation

IDL Skeletons

IDL ORB Dynamic
Invocation Object Adapter
Surrogates| Interface | Interface

Object Request Broker Core

Figure 1. Complete distributed application using the ORB.

Each ORB is expected to provide a general OA, called the Basic
Object Adapter (BOA), which is intended to support objects im-
plemented as separate programs. It is expected that most object im-
plementations can work with the BOA because its services are flex-
ible enough to accomodate several different kinds of object
implementations:

« Persistent implementations, which are activated by something
other than the BOA

* Shared implementations, in which multiple objects coexist in
the same program

+ Unshared implementations, in which only one object imple-
mention exists per program

» Server-per-method implementations, in which each operation
supported by an object is a separate program

Except for persistent implementations, the BOA will automati-
cally activate an object implementation if a request comes in for it
and it is not yet executing.

Object Adapters other than the BOA may exist. The CORBA
specification mentions a Library Object Adapter (LOA) for use with
lightweight object implementations that are co-resident with client
applications and an object-oriented database adapter that provides
an interface from object-oriented databases to the ORB. All in all,
it is expected that only a few different kinds of OAs will ever be
needed to satisfy nearly every kind of object implementation.

FITTING IT ALL TOGETHER Figure 1 shows how the various
CORBA components work together to facilitate distributed O-
O computing. Assuming the client has a valid object reference
to the object implementation, it can invoke an operation sup-
ported by that object. The request passes into the IDL surrogate,
which directs the request to the ORB. Alternatively, the client uses
the Interface Repository to dynamically create a request that is
dispatched through the DII. In either case, the ORB uses the
object reference to locate the object implementation and then
delivers the request into the object adapter managing that ob-
ject. The OA feeds the request into the IDL-generated skeleton
where it is then passed to the object implementation. Any return

values are passed back through the skeleton and OA to the ORB
Core. Then, depending on the origin of the call, the ORB Core
returns the values either through the IDL surrogate or the DII
to the client application.

FUTURE OF CORBA Some member companies working with the
CORBA 1.1 specification have realized that some parts of it are in-
complete. Subsequently, the OMG issued a RFI for ORB 2.0 ex-
tensions.8 In particular, the OMG is looking for information on
how to fill in portions of CORBA 1.1 that were intentionally left
incomplete, such as parts of the specification of the Interface
Repository. They are also asking for ideas for new IDL language
bindings, new object adapters, and extensions to ORB function-
ality such as support for transactions. It is hoped that the addi-
tions and extensions will enhance both the portability of CORBA-
compliant software and the level of interoperability between
independent ORBs.

CONCLUSION With the weight of over 300 OMG member com-
panies behind it, the CORBA specification is well on its way to be-
coming the standard base for distributed O-O applications. Its
flexible components allow legacy systems to work seamlessly with
new applications, independent of the systems they run on and the
languages used to implement them. C++ users can rely on CORBA-
compliant ORBs to help them develop portable distributed O-O
applications using C++ in a natural fashion. €

ACKNOWLEDGMENTS 1 would like to thank Tom Lyons, Mark Morwood, Joe
Sventek, and Teri Witham for their helpful reviews of early drafts of this article.

REFERENCES

1. The Common Object Request Broker: Architecture and
specification, OMG TC Document Number 91.12.1, Revision 1.1,
December 6, 1991.

2. C++ Language Mapping request for proposals, OMG TC Documen
Number 92.12.11, 1992.

3. Stroustrup, B. THE C++ PROGRAMMING LANGUAGE, Second Edition,
Addison-Wesley, Reading, MA, 1991.

4. Vines, D., and Z. Kishimoto, Smalltalk’s runtime type support for
C++, C++ ReporT 5(1): 4452, January 1993.

5. Gorlen, K., S. Orlow, and P. Plexico. DATA ABSTRACTION AND OB-
JECT-ORIENTED PROGRAMMING IN C++, John Wiley and Sons, New
York, NY, 1991.

6. Stroustrup, B., and D. Lenkov, Runtime type identification for
C++ (Revised yet again), document X3]J16/92-0121, ANSI Accred-
ited Standards Committee X3, Washington, D.C., 1992.

7. Ball, M., Inside templates: implementing C++ strategies, C++ REe-
PORT 4(7):3640, September 1992.

8. Object Request Broker 2.0 Extensions request for information,
OMG TC Document Number 92.12.10, 1992.

Steve Vinoski is a software design engineer with the Distributed Computing
Program of Hewlett-Packard, Chelmsford, MA. He is a member of a team that
is developing a distributed object management facility based on the OMG
CORBA specification. He can be reached by email at vinoski@apollo.hp.com.

38

JuLY—AUGUST 1993

