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Abstract

Since its first publication in 1991, the CORBA Specification has provided abstractions for
distributed programming that have served as the basis for a variety of distributed systems.
Despite its original flexibility and applicability to various environments, however, CORBA
has had to evolve to remain viable as a standard for distributed object-oriented applications.
This article explains several new features that are being added to CORBA as part of its
continuing evolution towards version 3.0. They are the Portable Object Adapter (POA),
support for Asynchronous Method Invocation (AMI), and support for passing Objects By
Value (OBV). These new features further extend the suitability of CORBA for the
development of diverse distributed systems.
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1 INTRODUCTION

Fundamentally, CORBA[1] is an application integration technology. Since its inception in 1991, CORBA 
has provided abstractions for distributed object-oriented programming that have allowed developers to 
seamlessly integrate diverse applications into heterogeneous distributed systems[2]. The core of any 
CORBA-based system, the Object Request Broker (ORB), hides the low-level details of platform-specific 
networking interfaces, allowing developers to focus on solving the problems specific to their application 
domains rather than having to build their own distributed computing infrastructures.

CORBA, like any technology or standard, has had to continually evolve since its original publication in 
order to remain viable as a basis for distributed applications. For example, the initial version of CORBA 
did not specify a standard protocol that applications could use to communicate with each other. For early 
CORBA users, the fact that each ORB used its own proprietary communication protocols did not present a 
problem. This was because most CORBA applications using version 1.0 were small enough that each 
could rely on the services of only a single ORB. However, as applications became larger and more distrib-
uted, they eventually needed to interact with other applications built using a different ORB. As a result, the 
standard General Inter-ORB Protocol (GIOP) and its specification for implementation over TCP/IP, the 
Internet Inter-ORB Protocol (IIOP), were added to version 2.0 of the CORBA specification, which was 
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published in 1995. Such enhancements and modifications of the CORBA specification over the years have 
increased its usefulness and applicability to an ever-growing variety of distributed computing problems.

As part of its continuing evolution, several significant new features are being added to CORBA as it 
approaches version 3.0:

• the Portable Object Adapter

• CORBA Messaging

• Objects By Value

This article provides an overview of each of these new CORBA features.

2 PORTABLE OBJECT ADAPTER

In CORBA, object adapters mediate between the world of CORBA objects and the world of programming 
language implementations, which are called servants. Object adapters provide the following services:

• creation of CORBA objects and their object references

• demultiplexing of requests made on each target CORBA object 

• dispatching requests to the appropriate servant that incarnates, or provides an implementation for, 
the target CORBA object

• activation and deactivation of CORBA objects.

CORBA object adapters are real-world instances of the Adapter design pattern[3] because they adapt the 
interfaces of servants to the interfaces offered by CORBA objects.

From the first version of CORBA through CORBA 2.1, the only standard object adapter defined by the 
OMG was called the Basic Object Adapter (BOA). As its name implied, it provided basic services to allow 
a wide variety of CORBA objects to be created and implemented. Unfortunately, as ORB vendors built 
their BOA implementations and developers used them to build applications, many missing features and 
much ambiguity were discovered in the BOA specification. Vendors then compensated for these problems 
by developing their own proprietary extensions, resulting in poor application portability between ORB 
implementations.

The new standard object adapter defined in the CORBA 2.2 specification is called the Portable Object 
Adapter (POA). It provides features that allow applications and their programming language servants to be 
portable between ORBs supplied by different vendors. The POA was developed jointly by a collection of 
ORB vendors and users based on their experiences with the BOA and with other proprietary object adapt-
ers.

The following sections describe the basics of the POA and each of its major features.

2.1 POA Basics

A POA essentially mediates between the ORB and the server application. Figure 1 shows a request flowing 
from a client into a server application. First, the client invokes the request using an object reference that 
refers to the target object. The request is then received by the server ORB. Part of the request contains an 
identifier kept in the object reference called an object key which uniquely identifies the target object within 
the server application. Because an application can have multiple POAs, the object key helps the ORB dis-
patch the request to the POA that hosts the target object. The POA then uses a portion of the object key 
called the object ID to determine an association between the target object and a programming language ser-
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vant. It may either store these associations in a map, or it may invoke the application to ask it to provide a 

servant for the target object ID, or it might use a default servant nominated by the application. In any case, 
the POA dispatches the request to the servant, which then carries out the request and delivers the results 
back to the POA, to the ORB, and finally to the client.

As this description implies, the POA deals mainly with three entities. Two of them, the object reference 
and the object ID, are used for identification purposes, while the third, the servant, actually implements 
CORBA objects.

• A server application first asks the POA to create a new CORBA object, and the POA returns an 
object reference as a result. The object reference, which uniquely identifies its object across all 
server applications, allows other applications to invoke requests on the new object.

• When creating a CORBA object, either the application or the POA provides an object ID to uniquely 
identify that object within the scope of the POA. This is described in more detail below in Section 
2.6.

• A servant is said to incarnate, or (literally) provide a body for, a CORBA object. Ultimately, a 
request made on a CORBA object is carried out by its servant. In both C++ and Java, servants are 
instances of programming language classes.

Essentially, the POA translates between object references, object IDs, and servants in order to dispatch 
requests from the world of CORBA objects to the world of programming language servants.

2.2 Persistent and Transient Objects

One feature of CORBA that originally helped set it apart from other distributed application development 
platforms is its provision of transparent and automatic activation of objects. If a client application issues a 
request to a target object that is currently not running or activated, CORBA requires ORB implementations 
to activate a server process for the object if necessary, and then activate the object itself. Any activation of 
server processes and target objects must be transparent to the requesting client. CORBA objects that can 
live beyond any particular process in which they are created or activated are called persistent objects. 
These objects are so named because they persist across the lifetimes of multiple server processes

Despite the utility of persistent objects, CORBA applications written prior to the adoption of the POA also 
required another type of object with a shorter lifetime. Specifically, it is often valuable to create objects 
whose lifetimes are bounded by that of the process or even the object adapter in which they are created. For 
example, one application might send a reference to one of its objects to another application with the intent 
of having the second application eventually call it back. However, if the first application exits, it may no 
longer want the callback information. In that case, it does not want the callback to be delivered, so it does 
not want the ORB to reactivate either it or the callback object.

The POA supports two types of CORBA objects: the persistent object originally specified by CORBA, and 
a new shorter-lived object called a transient object. The lifetime of a transient object is bounded by the 

ORB ServantsIncoming
request

Server Application

dispatch

POA
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lifetime of the POA in which it is created. Thus, transient objects are useful in situations requiring tempo-
rary objects, such as the callback scenario described above.

One additional benefit of transient objects is that they require less bookkeeping by the ORB. Once its cre-
ating POA has been destroyed, a transient CORBA object cannot be reactivated, which means that the 
ORB does not need to keep track of how to locate the object if it is not active when a request is made on it, 
nor how to activate its POA within a new server process. This in turn typically means less overhead in 
administering the CORBA application itself.

2.3 Explicit and On-demand Activation

An application with just a few CORBA objects may want to create servants for those objects and register 
them with the POA before it starts listening for requests. For example, a CORBA application embedded in 
a sensor might contain only a single CORBA object representing the sensor itself. Such an application will 
most likely explicitly register a servant for the sensor object, thus explicitly activating that object. The 
POA provides operations that support this style of explicit object activation and servant registration.

At the other end of the spectrum, applications with many CORBA objects may only want to activate those 
objects that actually receive requests. For applications with many thousands of objects, this approach 
greatly helps minimize resource usage, because only those objects that are actually the targets of requests 
are actually activated. For example, an application providing access to a large database may create a 
CORBA object for each database entry. Rather than creating a servant for each database entry every time it 
starts up, the application may instead use a servant manager to create servants on demand. Servant manag-
ers are local CORBA objects that are upcalled by a POA if it receives an invocation on an object that has 
no associated servant. The servant manager can either provide the POA with a newly-created servant, or it 
can reuse an existing one. Either way, it returns the servant as the result of the upcall, which the POA uses 
to complete the object invocation. Once the invocation completes, the POA either retains the association of 
the servant and the object ID of the target CORBA object in its Active Object Map, or it loses the associa-
tion, meaning that the next invocation on the object will again require the services of the servant manager.

Applications can also supply a default servant to a POA. A default servant incarnates all CORBA objects 
for a POA, avoiding the need to create a separate servant for each object as well as the invocation overhead 
associated with servant manager upcalls. Default servants can be useful when all CORBA objects in a 
given POA support the same IDL interface type.

2.4 Separation of Servant and CORBA Object Lifecycles

The POA specification allows a single servant to incarnate one or more CORBA objects during its lifetime. 
For example, a default servant normally incarnates all the CORBA objects for a given POA. Within the 
context of each CORBA request, the default servant incarnates the object that is the target of that request.

The POA specification also allows a single CORBA object to be incarnated by one or more servants during 
its lifetime. For example, if a POA does not maintain its associations between servants and objects in its 
Active Object Map, it may rely on a servant manager to supply servants for each CORBA request. If the 
servant manager creates a new servant every time it is invoked, each invocation on a given object will be 
carried out by a different servant.

The separation of servant and CORBA object lifecycles is necessary for scalability. If a servant could only 
incarnate a single object, server applications hosting many thousands of objects would be difficult to 
deploy due to the memory resources such applications would require. Furthermore, if a CORBA object 
lived only as long as the servant that incarnated it, it would be impossible to support persistent objects, 
which outlive any single server process.

Many CORBA application developers are confused by the fact that CORBA objects and servants are sepa-
rate entities with their own distinct lifetimes. Part of this confusion is due to the way many contemporary 
ORBs implement object references for objects that are located in the same address space as a client. It is 
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common practice with BOA implementations to use direct programming language pointers or references to 
servants as object references for collocated objects. Such an implementation of collocated object refer-
ences allows local invocations to cost the same as native programming language function calls. This 
approach is useful for certain types of applications that make heavy use of collocated objects, but for most 
applications, it has the downside of making local invocations act differently from those made on remote 
objects.

2.5 Different Policies for Multi-threading

A major drawback to the BOA specification was that it did not address any issues related to multithreaded 
applications. It is common for CORBA server applications to use multiple threads in order to easily service 
multiple concurrent requests[4]. An application might wish to service each new request in a separate 
newly-created thread, handle all requests for a given object in a separate thread, or employ a fixed-size 
pool of threads to handle all requests, queuing requests if all threads in the pool are busy. The appropriate 
thread usage strategy for an application depends on a number of factors, including the number of objects 
hosted by the application, the expected request rate, and the multi-threading support provided by the under-
lying operating system.

An application can create a POA with one of two different threading models. The ORB-controlled model 
allows the underlying ORB implementation to choose an appropriate multi-threading model, while the Sin-
gle-thread model guarantees that all requests for all objects in that POA will be serviced on a single thread.

The ORB-controlled model allows multiple requests to be processed concurrently by multiple threads. 
Applications using POAs created for this model must be implemented to properly handle reentrant invoca-
tions and concurrency, since servants registered with such a POA may be required to handle multiple 
CORBA requests simultaneously.

Applications using single-thread model POAs, however, need not be thread-aware. In fact, using a sin-
gle-threaded POA means that all requests for objects in that POA will be processed sequentially. This fea-
ture can be used to advantage when integrating existing code not designed for use in a multi-threaded 
environment.

While these POA multi-threading models are a vast improvement over the lack of multi-threading speci-
fied for the BOA, they could be made even more flexible. For example, rather than just supplying the 
ORB-controlled model, the POA could provide for finer-grained control over multi-threading policies by 
allowing applications to specify precise models such as a thread pool model, a thread-per-request model, or 
a thread-per-object model. Future standard extensions to the POA Specification may indeed supply appli-
cations with this much-needed flexibility.

2.6 Application Control over Object Existence

In order to be useful for the widest possible variety of applications, POAs maintain no persistent state. If a 
POA were required to keep track of its objects between different executions of a server application, it 
would require persistent storage. This requirement would greatly hamper deployment of POA-based appli-
cations in several ways. For example, it might require ORB vendors to either supply or require certain 
databases for use with their ORB products, and those databases may not integrate well with other databases 
already employed by the end user. Alternatively, the database chosen for use by the ORB vendor may not 
scale appropriately for the needs of certain applications—for example, it is highly impractical to deploy a 
large-scale relational database on an embedded industrial control sensor.

Because the POA maintains no persistent state, it is the responsibility of the application to determine 
whether a given CORBA object still exists or not. For example, if a servant manager receives an upcall to 
incarnate a servant for a given object, and the servant manager determines that the object in question no 
longer exists, it raises a CORBA standard OBJECT_NOT_EXIST exception.
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When a request is dispatched to a servant, or a servant manager is invoked to incarnate a servant, the appli-
cation can determine the identity of the target object by its object ID. An object ID is a sequence of bytes 
that is associated with a CORBA object when it is created, and it can either be supplied by the application 
or provided by the POA. For persistent objects, the application usually supplies an object ID that somehow 
indicates the location of the persistent storage for the object. For example, if each entry in a database is 
represented as a separate CORBA object, an application might use database keys for object IDs. When a 
request is made on such an object, the application can use its object ID —its database key—to see if the 
associated entry in the database still exists. If using the key to access the database fails because the entry is 
no longer present, the application can authoritatively report that the target object no longer exists.

This aspect of the POA design acknowledges the fact that, in one way or another, the application must ulti-
mately be responsible for tracking object identity and existence. Solutions based on the desire to relieve the 
application of this responsibility and instead give it to the object adapter are typically brittle and inflexible 
because the object adapter simply does not have enough knowledge about the application context to make 
object existence decisions.

2.7 Static and Dynamic Skeleton Interfaces

Many server applications are compiled with complete knowledge of the interfaces of the objects they sup-
port. The IDL interface descriptions for each object type are compiled to produce programming language 
skeleton code which is then compiled and linked into the server application. Because each skeleton con-
tains specific knowledge about all the operations supported by the interface it represents, including the 
number and types of arguments, they serve to assist the object adapter in dispatching each request to the 
proper servant. This approach, where statically-typed skeletons are compiled into the application, is used 
for most CORBA server applications.

There are some server applications, however, that must be able to determine object interface types at 
run-time. For example, consider a gateway application that makes objects from another distributed system 
appear as CORBA objects. Such an application might allow CORBA clients to access objects implemented 
using Microsoft COM. When objects with a new COM interface type are added to the system, the gateway 
should immediately allow access to them without needing to be shut down and recompiled with new static 
skeletons.

The POA supports the Dynamic Skeleton Interface (DSI) which allows servants to determine at run-time 
the details of the interface and the operation invoked on the target object. A servant implementing the DSI 
often makes use of the Interface Repository, a service that allows run-time access to IDL definitions, in 
order to determine the types of the arguments and the return value for the invoked operation.

2.8 Multiple POAs Per Application

All of the degrees of freedom discussed in the previous sections are controlled by applying different poli-
cies to a POA when it is created. For example, the value of a POA’s LifespanPolicy determines whether 
the objects it creates are transient or persistent. The value of a POA’s ServantRetentionPolicy controls 
whether its retains associations between object IDs and servants in an Active Object Map, or whether it 
requires the application to supply a servant manager to provide such associations. Other policies control 
whether the application or the POA supplies object IDs for new objects, whether a single servant can incar-
nate multiple CORBA objects or not, and whether the POA uses the ORB-controlled threading model or 
the single-thread model. Once a POA has been created, its policies cannot be changed.

To enable a single application to utilize different sets of POA policies, it is possible for an application to 
create and use multiple POAs. For example, an application wishing to support persistent CORBA objects 
must create a POA with the PERSISTENT policy. New POAs are created by invoking an operation on an 
already-existing POA. The ORB supplies a default POA called the Root POA which applications can use 
to create additional POAs. For portability, the set of policies supported by the Root POA are standardized.
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2.9 POA Summary

The main goal of the POA is to provide portability for CORBA server applications, something that the 
BOA specification was sorely lacking. It achieves this goal while providing a great deal of flexibility for 
server implementations. The variety of servant implementation types, servant managers, and object/servant 
associations made possible by the POA specification can be used to fulfill the requirements of many differ-
ent types of CORBA server applications.

3 CORBA MESSAGING

For years, the area of asynchronous messaging has been deemed by many as an obvious hole in the 
CORBA specification. Asynchronous messaging is widely viewed as a highly scalable solution allowing 
for the deployment of practical large-scale distributed systems. This is mainly because asynchronous mes-
saging assumes that all systems that need to communicate with one another will not be reliably connected 
to each other at all times. Disconnections may occur because of normal occasionally-connected and mobile 
systems such as laptop computers, palmtop computers, and hand-held devices, or they may occur because 
of problems such as network partitioning and system failure. These disconnections are seen as being inevi-
table in real-world computer networks, especially as the size of the distributed system grows. Because of 
its heavy reliance on synchronous invocation techniques, which tend to tightly couple clients and servers, 
CORBA has traditionally been criticized as being unable to properly cope with large-scale distributed sys-
tems.

The CORBA Messaging Specification[5] is one of the most solid specifications ever considered for adop-
tion by the OMG. It adds asynchronous messaging, time-independent invocation, and facilities for specify-
ing messaging Quality of Service (QoS) to CORBA in a way that meshes well with existing CORBA 
features.

3.1 Asynchronous Messaging

The first versions of CORBA provided three different models for request invocation:

• Synchronous—The client invokes an operation, then blocks waiting for the response.

• Deferred Synchronous—The client invokes an operation, then continues processing. It can later go 
back and either poll or block waiting for the response.

• Oneway—The client invokes an operation, and the ORB provides only a best-effort guarantee that 
the request will actually be delivered. There is no response.

The Deferred Synchronous request model was only available for clients using the Dynamic Invocation 
Interface (DII) rather than static invocation techniques. The Oneway model, which is often erroneously 
thought of as an asynchronous request model, was originally intended to allow CORBA requests to be 
delivered using unreliable transports such as the User Datagram Protocol (UDP).

The CORBA Messaging Specification preserves these three request models and adds two asynchronous 
request models:

• Callback—The client supplies an additional object reference parameter with each request 
invocation, and when the response arrives the ORB uses that object reference to deliver the response 
back to the application.

• Polling—The client invokes an operation, which immediately returns a valuetype (see Section 4) 
that can be used to separately poll or wait for the response.

Unlike the traditional deferred synchronous request model, the Callback and Polling asynchronous models 
are available for clients using statically-typed stubs generated from IDL interfaces. This is a significant 
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advantage for most programming languages because static invocations provide a much more natural pro-
gramming model than the DII.

3.2 Time-Independent Invocation

To allow invocations on objects that are not active or are currently disconnected, the CORBA Messaging 
Specification augments the standard GIOP and IIOP ORB interoperability protocols with the ability to 
deliver requests to intermediate routing agents. These agents typically provide store-and-forward capabili-
ties that can keep messages alive when the target is not currently available or active. Replies may also be 
handled by routing agents if the requesting client becomes unavailable or disconnected. The overall life-
time of the request can be controlled by specifying the appropriate QoS policies for the request.

3.3 Quality of Service

CORBA traditionally has hidden certain issues from client applications, specifically those related to locat-
ing objects, establishing network connections, and delivering requests. Originally, this was done to pre-
serve maximal implementation freedom for ORB vendors and to hide low-level networking details from 
clients. Unfortunately, hiding these details makes it difficult for CORBA applications to control the quali-
ties of the message delivery services provided by the underlying ORB.

The CORBA Messaging Specification corrects this deficiency by allowing clients to specify the QoS they 
require for message delivery, message queuing, and message priorities. QoS policies can be specified at the 
ORB level to affect all requests, at the thread level to affect only those requests made from that thread, and 
at the object reference level to affect only those requests made on the referred-to object.

4 OBJECTS BY VALUE

As with asynchronous messaging, the lack of support for passing objects by value has long been seen as a 
serious hole in the CORBA specification. CORBA has always allowed data types like long integers, 
structs, and arrays to be passed as arguments to operations. To allow objects to be able to invoke operations 
on other objects, CORBA also allows references to objects to be passed as arguments. Passing a reference 
to a remote application means that the object stays put, and thus any invocations of the object performed by 
the remote application cause the requests to move over the network to the object, rather than the object 
itself moving to the site of each request.

4.1 Valuetype Basics

To address this shortcoming, support for passing objects by value was recently added to CORBA[6]. The 
adopted approach involves the addition of a new construct to OMG IDL called the valuetype. A valuetype 
is essentially a cross between a struct and an interface because it supports both data members and opera-
tions, much the same as C++ and Java class definitions. Like interfaces, valuetypes can derive from other 
valuetypes (single inheritance only), and they can also support interface types in order to inherit their oper-
ations.

When a valuetype is passed as an argument to a remote operation, it is created as a copy in the receiving 
address space. The identity of the valuetype copy is totally separate from the original, and operations on 
one have no effect on the other. Because of the copy semantics, all operations invoked on valuetypes are 
always local to the process in which the valuetype exists—that is, unlike operation invocations on 
CORBA objects, valuetype invocations never involve the transmission of requests and replies over the net-
work.

A valuetype definition for a singly-linked list of object references might appear as shown in Figure 2.

// IDL
valuetype Node {

init(in Object ref, in Node next); // constructor
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Node next(); // access next Node
void set_next(in Node next); // set next Node

public Object ref_data; // object reference data member
private Node next_node; // pointer to next node in list

};

Figure 2 Valuetype definition for a singly-linked list of object references.

The IDL specification shown in the figure defines a new valuetype named Node which contains an initial-
ization function, two operations, and two data members. As its name implies, the initialization function, 
introduced by the init keyword, provides a hook for the application to construct instances of the value-
type. Initializers are essentially equivalent to constructors in both C++ and Java. The next operation takes 
no arguments and returns the next Node in the linked list. The set_next operation allows the next Node to 
be set. The first data member, ref_data, contains the object reference held by each linked list node, while 
the next_node member refers to the next node in the linked list. The ref_data member is declared pub
lic and so can be accessed directly, while the next_node member is declared private to prevent all but 
the operations on Node from accessing it.

For C++ applications, an IDL compiler translates the Node type to the C++ class shown in Figure 3.

// C++
class Node : public virtual CORBA::ValueBase {
public:

virtual Node* next() = 0;
virtual void set_next(Node* next) = 0;

virtual CORBA::Object_ptr ref_data() const;
virtual void ref_data(CORBA::Object_ptr ref);

protected:
Node();
Node(CORBA::Object_ptr ref, Node* next);
virtual ~Node();

virtual Node* next_node() const;
virtual void next_node(Node* n);

};

Figure 3 C++ class generated from IDL Node valuetype definition.

The application developer is expected to derive from the generated C++ class shown in Figure 3 in order to 
support concrete instances of the Node valuetype. Note that this class is abstract due to the pure virtual 
next and set_next member functions. Because the IDL compiler cannot possibly know the semantics 
their implementations should have, the next and set_next member functions are expected to be over-
ridden and implemented by derived classes. Also note that the IDL data members ref_data and 
next_node are respectively mapped to public and protected virtual non-pure pairs of accessor and mod-
ifier member functions. The next_node function is protected to allow derived classes to access it with-
out making it public, and accessor/modifier pairs are used for the mapping instead of actual data members 
to allow derived classes the choice of how to best represent the data members.

Of particular importance is the fact that all uses of the Node type as argument types and return types in 
C++ map to C++ pointers. Pointers are used for two reasons:
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• The address of a C++ valuetype instance is effectively its identity, which allows acyclic graphs of 
valuetype instances to be properly marshaled and unmarshaled. If two nodes in a graph point to the 
same node, the shared node is marshaled and unmarshaled only once, allowing the graph to be 
correctly replicated in the receiving process.

• It must be possible for a reference to a valuetype instance to be null, i.e., to refer to no instance. 
Since C++ references are not allowed to be null, but C++ pointers are, pointers must be used as the 
mapping for valuetype references.

4.2 State and Behavior

Passing the state (the data members) of valuetypes as operation arguments to remote applications is much 
like passing other data types, but most valuetypes also possess behavior in the form of their own opera-
tions. Unlike state, behavior is not so easily passed over the network. Given the heterogeneous nature of 
most networks that CORBA is used in, a client may very well be written in Java or Smalltalk while a server 
may be written in C++, and the client and server may execute on different computer architectures as well. 
In this case, passing the implementation of the valuetype operations from client to server is simply not pos-
sible.

For Java and Smalltalk applications, enough information can be marshaled along with each valuetype to 
allow the receiving application to download the bytecodes for the valuetype operation implementations. 
For languages like C++ and C, the receiving application either has to already have compile-time knowl-
edge of the valuetype, or it has to be able to somehow acquire it, perhaps in the form of a dynami-
cally-loadable library (DLL). In general this may seem somewhat restrictive, but in practice it actually 
works very well. This is because within a security domain where clients and servers are developed, main-
tained, and administered together, compiled languages like C++ and C can be used for implementations, 
and the necessary valuetype implementations can be supplied as described above. Where clients and serv-
ers exist in different administrative domains, such as when the client exists in a web browser and accesses 
servers over the Internet, Java can be used for the client and server implementations so that downloading 
valuetype implementations can be performed with relative ease and safety.

4.3 Objects By Value Summary

The addition of the valuetype construct to OMG IDL provides support for passing objects by value 
between CORBA applications. Valuetypes, which can be defined in IDL with both data members and oper-
ations, are best used to define lightweight encapsulated data types such as linked lists, graphs, and dates.

Unfortunately, the Objects By Value (OBV) Specification is not without drawbacks. It is overly compli-
cated and at the same time is lacking features. Due to the nature of this article, the complicated aspects of 
the specification have not been described here, but they include various notions of valuetype and interface 
inheritance, special valuetypes called boxed valuetypes which are essentially valuetypes with only a single 
data member and no operations, and a new special form of interface called an abstract interface. (The latter 
is an especially strange construct, given that normal OMG IDL interfaces have always been abstract, ever 
since the very first version of CORBA.) The combination of all of these new features with each other and 
with existing CORBA features was unfortunately not thought out very well. Therefore, OBV features are 
more difficult to use than they need to be. Furthermore, there is a high likelyhood that several serious 
unknown problems still exist in the OBV Specification, not yet having been stumbled upon by ORB devel-
opers or users.

One obvious feature missing from the OBV Specification is the ability to pass true CORBA objects by 
value. The OBV Specification allows valuetypes to be derived from OMG IDL interfaces, but just as for 
normal CORBA objects, only their object references can be passed as arguments if they are used in a con-
text requiring an object. Valuetypes are therefore not really CORBA objects, even if they are derived from 
interfaces, but are instead a new OMG IDL type. Passing true CORBA objects by value is a difficult prob-
lem due to required interactions with object adapters, issues surrounding locating objects in motion, issues 
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regarding whether objects are copied or moved, issues related to object identity and its preservation, and 
issues concerning the movement of objects between ORBs from different vendors. It is therefore not sur-
prising that the OBV Specification submitters did not attempt to tackle this problem, but it effectively 
means that CORBA still lacks a real OBV solution.

Advances in CORBA have traditionally been conservative; they have been largely based on well-known 
and proven technologies and techniques. For example, the first version of CORBA was based largely on 
existing Remote Procedure Call (RPC) technology that had already been deployed in production distrib-
uted systems. Unfortunately, because several unproven and unimplemented techniques serve as its founda-
tion, the OBV Specification has broken with this tradition. The OMG is currently reviewing its technology 
adoption procedures with the goal of preventing similar hasty and ill-advised additions to CORBA in the 
future.

5 SUMMARY

Since its inception in 1991, CORBA has proven itself as a solid basis for heterogeneous object-oriented 
distributed systems. Like all technologies, however, CORBA must evolve in order to remain viable. The 
addition of three significant new CORBA features—the Portable Object Adapter, CORBA Messaging, and 
Objects By Value—allow CORBA to be employed for applications it was never before suited for. These 
new features thus serve to further increase the already-wide variety of applications and technologies that 
can be practically integrated under the CORBA umbrella.
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